Fast and Sensitive Voltammetric Method for the Determination of Rifampicin on Renewable Amalgam Film Electrode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measuring Apparatus and Software
2.2. Chemicals and Glassware
2.3. Standard Procedure of Measurements
2.4. Analysis of Rifampicin in Pharmaceutical Formulation
3. Results
3.1. Influence of Supporting Electrolyte Type and pH on Rifampicin Peak
3.2. Effect of the DPV Parameters on Rifampicin Peak
3.3. Influence of the Surface Area of the Hg(Ag)FE Electrode on Rifampicin Peak
3.4. Interferences
3.5. Analytical Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zumla, A.; Raviglione, M.; Hafner, R.; von Reyn, C.F. Tuberculosis. N. Engl. J. Med. 2013, 368, 745–755. [Google Scholar] [CrossRef]
- Trestioreanu, A.Z.; Fraser, A.; Gafter-Gvili, A.; Paul, M.; Leibovici, L. Antibiotics for preventing meningococcal infections. Cochrane Database Syst. Rev. 2013, 2013, CD004785. [Google Scholar] [CrossRef]
- Lee, M.Y.; Bourgeois, S.; Almouazen, E.; Pelletier, J.; Renaud, F.; Fessi, H.; Kodjikian, L. Microencapsulation of rifampicin for the prevention of endophthalmitis: In vitro release studies and antibacterial assessment. Int. J. Pharm. 2016, 505, 262–270. [Google Scholar] [CrossRef]
- Ray, J.; Gardiner, I.; Marriott, D. Managing antituberculosis drug therapy by therapeutic drug monitoring of rifampicin and isoniazid. Intern. Med. J. 2003, 33, 229–234. [Google Scholar] [CrossRef]
- Alsultan, A.; Peloquin, C.A. Therapeutic Drug Monitoring in the Treatment of Tuberculosis: An Update. Drugs 2014, 74, 839–854. [Google Scholar] [CrossRef]
- Moussa, L.A.; El Bouazzi, O.; Serragui, S.; Tanani, D.S.; Soulaymani, A. Rifampicin and isoniazid plasma concentrations in relation to adverse reactions in tuberculosis patients: A retrospective analysis. Ther. Adv. Drug Saf. 2016, 7, 239–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Global Tuberculosis Report 2020; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Visca, D.; Ong, C.; Tiberi, S.; Centis, R.; D’Ambrosio, L.; Chen, B.; Mueller, J.; Duarte, R.; Dalcolmo, M.; Sotgiu, G.; et al. Tuberculosis and COVID-19 interaction: A review of biological, clinical and public health effects. Pulmonology 2021, 27, 151–165. [Google Scholar] [CrossRef] [PubMed]
- Migliori, G.B.; Thong, P.M.; Akkerman, O.; Alffenaar, J.-W.; Álvarez-Navascués, F.; Assao-Neino, M.M.; Bernard, P.V.; Biala, J.S.; Blanc, F.-X.; Bogorodskaya, E.M.; et al. Worldwide Effects of Coronavirus Disease Pandemic on Tuberculosis Services, January–April 2020. Emerg. Infect. Dis. 2020, 26, 2709–2712. [Google Scholar] [CrossRef] [PubMed]
- Shewiyo, D.; Kaale, E.; Risha, P.; Dejaegher, B.; Smeyers-Verbeke, J.; Heyden, Y.V. Optimization of a reversed-phase-high-performance thin-layer chromatography method for the separation of isoniazid, ethambutol, rifampicin and pyrazinamide in fixed-dose combination antituberculosis tablets. J. Chromatogr. A 2012, 1260, 232–238. [Google Scholar] [CrossRef]
- Rageh, A.M.I.M.; Mohamed, F.A.; Atia, N.N.; Botros, S.M. Simultaneous Densitometric Determination of First Line Anti-TB Drugs in Binary, Ternary, and Quaternary Mixtures. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 1061–1067. [Google Scholar] [CrossRef]
- Strock, J.; Nguyen, M.; Sherma, J. Transfer of Minilab TLC Screening Methods to Quantitative HPTLC-Densitometry for Pyrazinamide, Ethambutol, Isoniazid, and Rifampicin in a Combination Tablet. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 1126–1130. [Google Scholar] [CrossRef]
- Franco, P.H.C.; Chellini, P.R.; Oliveira, M.A.L.; Pianetti, G.A. Simultaneous Determination of First-Line 4-FDC Antituberculosis Drugs by UHPLC–UV and HPLC–UV: A Comparative Study. J. AOAC Int. 2017, 100, 1008–1015. [Google Scholar] [CrossRef]
- Iriminescu, D.; Cârcu-Dobrin, M.; Hancu, G.; Mircia, E.; Kelemen, H.; Rusu, A.; Tilinca, M. Simultaneous determination of isoniazid an drifampicin by micellar electrokinetic chromatography. Stud. Univ. Vasile Goldis Arad. Ser. Stiint. Vietii 2016, 26, 353–357. [Google Scholar]
- Marcellos, L.F.; Faria, A.F.; Souza, M.V.N.; Almeida, M.R.; Sabin, G.P.; Poppi, R.; Oliveira, M.A.L. Simultaneous analysis of first-line anti-tuberculosis drugs in tablets by UV spectrophotometry compared to capillary zone electrophoresis. Open Chem. 2012, 10, 1808–1816. [Google Scholar] [CrossRef] [Green Version]
- Grégoire, M.; Leroy, A.; Bouquié, R.; Malandain, D.; Dailly, E.; Boutoille, D.; Renaud, C.; Jolliet, P.; Caillon, J.; Deslandes, G. Simultaneous determination of ceftaroline, daptomycin, linezolid and rifampicin concentrations in human plasma by on-line solid phase extraction coupled to high-performance liquid chromatography–tandem mass spectrometry. J. Pharm. Biomed. Anal. 2016, 118, 17–26. [Google Scholar] [CrossRef]
- Liu, Z.; Yin, P.; Gong, H.; Li, P.; Wang, X.; He, Y. Determination of rifampicin based on fluorescence quenching of GSH capped CdTe/ZnS QDs. J. Lumin. 2012, 132, 2484–2488. [Google Scholar] [CrossRef]
- Kawde, A.-N.; Temerk, Y.; Farhan, N. Adsorptive stripping voltammetry of antibiotics rifamycin SV and rifampicin at renewable pencil electrodes. Acta Chim. Slov. 2014, 61, 398–405. [Google Scholar]
- Asadpour-Zeynali, K.; Mollarasouli, F. Novel electrochemical biosensor based on PVP capped CoFe2O4 @CdSe core-shell nanoparticles modified electrode for ultra-trace level determination of rifampicin by square wave adsorptive stripping voltammetry. Biosens. Bioelectron. 2017, 92, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Chokkareddy, R.; Bhajanthri, N.K.; Redhi, G.G. A Novel Electrode Architecture for Monitoring Rifampicin in Various Pharmaceuticals. Int. J. Electrochem. Sci. 2017, 12, 9190–9203. [Google Scholar] [CrossRef]
- Beni, V.; Ogurtsov, V.I.; Bakunin, N.V.; Arrigan, D.W.; Hill, M. Development of a portable electroanalytical system for the stripping voltammetry of metals: Determination of copper in acetic acid soil extracts. Anal. Chim. Acta 2005, 552, 190–200. [Google Scholar] [CrossRef]
- Baś, B.; Kowalski, Z. Preparation of Silver Surface for Mercury Film Electrode of Prolonged Analytical Application. Electroanalysis 2002, 14, 1067–1071. [Google Scholar] [CrossRef]
- Pecková, K.; Vrzalová, L.; Bencko, V.; Barek, J. Voltammetric and amperometric determination of N-nitroso antineoplastic drugs at mercury and amalgam electrodes. Collect. Czechoslov. Chem. Commun. 2009, 74, 1697–1713. [Google Scholar] [CrossRef]
- Baś, B.; Jakubowska, M.; Górski, Ł. Application of renewable silver amalgam annular band electrode to voltammetric determination of vitamins C, B1 and B2. Talanta 2011, 84, 1032–1037. [Google Scholar] [CrossRef] [PubMed]
- Brycht, M.; Skrzypek, S.; Guzsvány, V.; Berenji, J. Conditioning of renewable silver amalgam film electrode for the characterization of clothianidin and its determination in selected samples by adsorptive square-wave voltammetry. Talanta 2013, 117, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Piech, R.; Paczosa-Bator, B. Sensitive and fast determination of papaverine by adsorptive stripping voltammetry on renewable mercury film electrode. Open Chem. 2013, 11, 736–741. [Google Scholar] [CrossRef] [Green Version]
- Smajdor, J.; Piech, R.; Paczosa-Bator, B. Voltammetric Determination of Drospirenone on Mercury Film Electrode. J. Electrochem. Soc. 2017, 164, H311–H315. [Google Scholar] [CrossRef]
- Szlósarczyk, M.; Piech, R.; Paczosa-Bator, B.; Maslanka, A.; Opoka, W.; Krzek, J. Voltammetric Determination of Isoniazid using Cyclic Renewable Mercury Film Silver Based Electrode. Pharm. Anal. Acta 2012, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Górska, A.; Paczosa-Bator, B.; Piech, R. Highly Sensitive Levodopa Determination by Means of Adsorptive Stripping Voltammetry on Ruthenium Dioxide-Carbon Black-Nafion Modified Glassy Carbon Electrode. Sensors 2020, 21, 60. [Google Scholar] [CrossRef]
- Alonso-Lomillo, M.A.; Domínguez-Renedo, O.; Arcos-Martínez, J. Optimization Procedure, Applying the Experimental-Design Methodology, for the Determination of Rifampicin after Metal Complexation by Differential Pulse Adsorptive Stripping Voltammetry. Helv. Chim. Acta 2002, 85, 2430–2439. [Google Scholar] [CrossRef]
Analytical Technique | LOD [µgmL−1] | LOQ [µgmL−1] | Reference |
---|---|---|---|
UHPLC–UV | 1.9 | 2.9 | [13] |
MEKC | 4.5 | 14.9 | [14] |
LC–MS/MS | 0.1 * | 0.1 * | [16] |
Fluorimetry | 0.25 | 0.75 | [17] |
DPV:HMDE | 0.13 | 0.4 | [30] |
DPV:Hg(Ag)FE | 0.12 | 0.4 | This work |
Added [mg] | Found [mg] | Recovery [%] | |
---|---|---|---|
Rifampicin | - | 149.5 ± 6.4 | - |
75 | 221.9 ± 8.2 | 98.8 | |
150 | 308.1 ± 11.7 | 102.9 | |
225 | 367.5 ± 12.6 | 98.1 |
Sample | Nominal [mg] | Found [mg] | µ [mg] | Recovery [%] | RSD [%] | SD |
---|---|---|---|---|---|---|
Rifamazid® 150 mg rifampicin 100 mg isoniazid | 150 | 145.2 152.4 141.1 145.8 155.4 157.3 | 149.5 | 99.7 | 4.3 | 6.4 |
Rifampicyna TZF 150 mg rifampicin | 150 | 142.6 144.7 146.5 147.2 151.5 158.8 | 148.5 | 99.0 | 3.9 | 5.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szlósarczyk, M.; Piech, R.; Milc, A.; Hubicka, U. Fast and Sensitive Voltammetric Method for the Determination of Rifampicin on Renewable Amalgam Film Electrode. Sensors 2021, 21, 5792. https://doi.org/10.3390/s21175792
Szlósarczyk M, Piech R, Milc A, Hubicka U. Fast and Sensitive Voltammetric Method for the Determination of Rifampicin on Renewable Amalgam Film Electrode. Sensors. 2021; 21(17):5792. https://doi.org/10.3390/s21175792
Chicago/Turabian StyleSzlósarczyk, Marek, Robert Piech, Anna Milc, and Urszula Hubicka. 2021. "Fast and Sensitive Voltammetric Method for the Determination of Rifampicin on Renewable Amalgam Film Electrode" Sensors 21, no. 17: 5792. https://doi.org/10.3390/s21175792
APA StyleSzlósarczyk, M., Piech, R., Milc, A., & Hubicka, U. (2021). Fast and Sensitive Voltammetric Method for the Determination of Rifampicin on Renewable Amalgam Film Electrode. Sensors, 21(17), 5792. https://doi.org/10.3390/s21175792