Optimizing Reaction Time in Relation to Manual and Foot Laterality in Children Using the Fitlight Technological Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
- -
- initial testing: 26–30 September 2021;
- -
- implementation of the exercise program (20 lessons) 5 October 2021–11 December 2021;
- -
- final testing: 14–18 December 2021.
2.3. Experimental Program of Study
- -
- ML2: standing 1 m away from a gymnastics bench where 2 spots are placed at a distance of 2 m between them, moving to the gymnastics bench and touching the blue spot with the right hand or the white spot with the left hand and returning to the line of departure; the number of successes for each hand per 30 s is quantified;
- -
- ML4: dissonance of 6 spotlights randomly on a square panel with a side of 1 m, the student must touch with either hand as many of the light spots as possible in 30 s;
- -
- ML5: similar to exercise ML4, but the blue spots will be touched with the right hand, and the white spots with the left hand; the number of successes for each hand per 30 s is quantified.
- -
- FL3: a triangle ABC is drawn on the ground, the student sits in corner A, and 4 spots are placed on the side BC with a length of 2 m; the student must move and touch as many of the light spots as possible with either foot; the number of successes in 30 s is quantified;
- -
- FL7: a circle with a diameter of 2 m is drawn on the ground, and 8 spots are placed on its circumference; the student must identify the light spot and touch it with either foot, the number of successes in 30 s is quantified;
- -
- FL10: two parallel lines with a length of 2 m are drawn on the ground, 2 m apart; 4 spots are placed on each line, and the spots light up randomly; the student is placed in the center, at the end of the two lines, and the student must touch with his right foot the light spots on the right line and with his left foot the light spots on the left line; the number of successes for each leg per 30 s is quantified.
2.4. Measures
- -
- the Fitlight test 4 spots in line—manual execution (right hand/left hand);
- -
- the Fitlight test 4 spots in line—foot execution (right leg/left leg);
- -
- the Fitlight test 8 spots in a square—manual execution;
- -
- the Fitlight test 8 spots in the square—foot execution.
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mnif, M.; Chikh, S.; Jarraya, M. Effect of Social Context on Cognitive and Motor Behavior: A Systematic Review. J. Mot. Behav. 2022, 54, 631–647. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cheng, J.; Wang, Z. Relationship Among Motor Behavior, Motor Development, and Motor Performance in Children Aged 7–8 Years in China. Front. Public Health 2022, 10, 898266. [Google Scholar] [CrossRef] [PubMed]
- Gray, C.; Gibbons, R.; Larouche, R.; Sandseter, E.B.; Bienenstock, A.; Brussoni, M.; Chabot, G.; Herrington, S.; Janssen, I.; Pickett, W.; et al. What Is the Relationship between Outdoor Time and Physical Activity, Sedentary Behaviour, and Physical Fitness in Children? A Systematic Review. Int. J. Environ. Res. Public Health 2015, 12, 6455–6474. [Google Scholar] [CrossRef] [Green Version]
- Le Goff, L.; Mamimoue, É.; Pelluet, A.; Des Portes, V.; Fourneret, P. Psychomotor development in infants and children. Normal and pathological aspects (sleep, diet, sphincter controls, psychomotricity). Rev. Prat. 2021, 71, 1143–1149. [Google Scholar] [PubMed]
- Petre, I.M.; Boscoianu, M.; Oancea, B.; Chicomban, M.; Turcu, I.; Simion, G. Analysis of the Physiognomy of Unique Sets in the Maximum Number of Repetitions Strategy—The Case of One-Arm Scott Machine Seated Bicep Curls. Appl. Sci. 2022, 12, 8308. [Google Scholar] [CrossRef]
- Cojocariu, A.; Abalasei, B. Does the reaction time to visual stimuli contribute to performance in judo. Arch. Budo 2014, 10, 73–78. [Google Scholar]
- Muntianu, V.A.; Voinea, N.L. Psychomotor abilities in handball. Overview. Sport Soc.—Interdiscip. J. Phys. Educ. Sport. 2020, 20, 1582–2168. [Google Scholar] [CrossRef]
- Muntianu, V.A.; Voinea, N.L. Evaluation of anthropometric characteristics of junior handball players in correlation with field testing. Sport Soc.—Interdiscip. J. Phys. Educ. Sport. 2020, 20, 1–7. [Google Scholar] [CrossRef]
- Berdila, A.; Talaghir, L.G.; Iconomescu, T.M.; Rus, C.M. Values and Interferences of Psychomotricity in Education–a Study of the Domain-Specific Literature. Rev. Rom. Pentru Educ. Multidimens. 2019, 11, 22–42. [Google Scholar] [CrossRef]
- Cro, M.; Andreucci, L.; Pereira, A.; Pinho, A.; Chova, L.; Belenguer, D.; Martinez, A. Psychomotricty, Health and Well-Being in Childhood Education. In Proceedings of the Edulearn: 3rd International Conference on Education and New Learning Technologies, Barcelona, Spain, 4–6 July 2011; pp. 4716–4722. [Google Scholar]
- Rojo-Ramos, J.; González-Becerra, M.J.; Gómez-Paniagua, S.; Carlos-Vivas, J.; Acevedo-Duque, Á.; Adsuar, J.C. Psychomotor Skills Activities in the Classroom from an Early Childhood Education Teachers’ Perspective. Children 2022, 9, 1214. [Google Scholar] [CrossRef]
- Jardim, R.; Guidotti, V. Educational experiences: Psychomotricity. Rev. Gênero Interdiscip. 2022, 3, 1–6. [Google Scholar] [CrossRef]
- Pinheiro, C.B.; Mello, A.M.G.D.; Abed, A.L.Z. Psychopedagogy and psychomotricity: Contributions to the literacy teacher. Construção Psicopedag. 2021, 30, 54–68. [Google Scholar]
- Iconomescu, T.M.; Berdila, A.; Talaghir, L.G. The influence of motion games in the Improvement of psychomotricity during the physical education lesson in primary school education. Чeлoвeк. Cnopm. Meдuцuнa 2019, 19, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Andreu-Cabrera, E.; Romero-Naranjo, F.J. Neuromotricidad, Psicomotricidad y Motricidad. Nuevas aproximaciones metodológicas. (Neuromotricity, Psychomotricity and Motricity. New methodological approaches). Retos 2021, 42, 924–938. [Google Scholar] [CrossRef]
- Cappellini, A.C.; Mancini, S.; Zuffellato, S.; Bini, F.; Polcaro, P.; Conti, A.A.; Macchi, C. Environmental effects on school age child psychomotricity. Minerva Pediatr. 2008, 60, 277–284. [Google Scholar]
- Pescari, T.A.; Popescu, T.L. The importance of preschool education of psychomotricity component to prevent the instrumental disorders. Acad. Sci. J. Psychol. Ser. 2012, 1, 25. [Google Scholar]
- Causby, R.; Reed, L.; McDonnell, M.; Hillier, S. Use of Objective Psychomotor Tests in Health Professionals. Percept. Mot. Ski. 2014, 118, 765–804. [Google Scholar] [CrossRef]
- Woods, D.L.; Wyma, J.M.; Yund, E.W.; Herron, T.J.; Reed, B. Factors influencing the latency of simple reaction time. Front. Hum. Neurosci. 2015, 9, 131. [Google Scholar] [CrossRef] [Green Version]
- Wilke, J.; Vogel, O. Computerized Cognitive Training with Minimal Motor Component Improves Lower Limb Choice-Reaction Time. J. Sports Sci. Med. 2020, 19, 529–534. [Google Scholar]
- Bjørklund, R.A. Perceptual and motor components of performance in three different reaction time experiments. Scand. J. Psychol. 1992, 33, 147–159. [Google Scholar] [CrossRef]
- Fitlight Trainer. Available online: https://www.fitlighttraining.com/ (accessed on 2 November 2022).
- Myers, L.R.; Toonstra, J.L.; Cripps, A.E. The Test–Retest Reliability and Minimal Detectable Change of the FitLight Trainer™. Int. J. Athl. Ther. Train. 2022, 6, 1–5. [Google Scholar] [CrossRef]
- Vater, C.; Strasburger, H. Topical Review: The Top Five Peripheral Vision Tools in Sport. Optom. Vis. Sci. 2021, 98, 704–722. [Google Scholar] [CrossRef] [PubMed]
- See, L.C.; Liu, Y.H.; Lim, A.Y.; Chen, W.M.; Lee, J.S. Development, reliability, and validity of a new protocol for measuring visuomotor response among athletes and non-athletes. Med. Sport 2021, 74, 642–656. [Google Scholar] [CrossRef]
- Reigal, R.E.; Barrero, S.; Martín, I.; Morales-Sánchez, V.; Juárez-Ruiz de Mier, R.; Hernández-Mendo, A. Relationships Between Reaction Time, Selective Attention, Physical Activity, and Physical Fitness in Children. Front. Psychol. 2019, 10, 2278. [Google Scholar] [CrossRef]
- Rauter, S.; Coh, M.; Vodicar, J.; Zvan, M.; Krizaj, J.; Simenko, J.; Mackala, K. Analysis of reactive agility and change-of-direction speed between soccer players and physical education students. Hum. Mov. 2018, 19, 68–74. [Google Scholar] [CrossRef]
- Badau, D.; Badau, A.; Ene-Voiculescu, C.; Larion, A.; Ene-Voiculescu, V.; Mihaila, I.; Fleancu, J.L.; Tudor, V.; Tifrea, C.; Cotovanu, A.S.; et al. The Impact of Implementing an Exergame Program on the Level of Reaction Time Optimization in Handball, Volleyball, and Basketball Players. Int. J. Environ. Res. Public Health 2022, 19, 5598. [Google Scholar] [CrossRef]
- Forni, F.; Farinini, E.; Leardi, R.; Rinaldo, A. Effects of visual training on motor performance in young tennis players using FitLight trainer. J. Sports Med. Phys. Fit. 2022, 62, 585–592. [Google Scholar] [CrossRef]
- Zwierko, T.; Florkiewicz, B.; Slawomir, F.; Kszak-Krzyzanowska, A. The ability to maintain atention during visuomotor task performance in handball players and non athletes. Cent. Eur. J. Sport Sci. Med. 2014, 7, 99–106. [Google Scholar]
- Theofilou, G.; Ladakis, I.; Mavroidi, C.; Kilintzis, V.; Mirachtsis, T.; Chouvarda, I.; Kouidi, E. The Effects of a Visual Stimuli Training Program on Reaction Time, Cognitive Function, and Fitness in Young Soccer Players. Sensors 2022, 22, 6680. [Google Scholar] [CrossRef]
- Wilke, J.; Vogel, O.; Ungricht, S. Traditional Neuropsychological Testing Does Not Predict Motor-Cognitive Test Performance. Int. J. Environ. Res. Public Health 2020, 17, 7393. [Google Scholar] [CrossRef]
- Lima, R.; Pereira, J.; Caleiro, F.; Clemente, F.; Rico-González, M. Reliability of a Reactive Agility Test for Youth Volleyball Players. Pol. J. Sport Tour. Sciendo 2021, 28, 8–12. [Google Scholar] [CrossRef]
- Brown, S.G.; Roy, E.A.; Rohr, L.E.; Snider, B.R.; Bryden, P.J. Preference and performance measures of handedness. Brain Cogn. 2004, 55, 283–285. [Google Scholar] [CrossRef]
- Mayolas Pi, M.C.; Reverter Masià, J. The Influence of Age and Gender on the Phenotypes and Coefficients of Laterality in 6- to 15-year-old Children. Apunts. Educ. Física Y Deportes 2015, 120, 11–18. [Google Scholar] [CrossRef]
- Bora, L.; Cardoso, V.; de Toni, P. Left—Right asymmetry and Human Neuropsychomotor Development. Rev. Ces Psicol. 2019, 12, 54–68. [Google Scholar] [CrossRef]
- Zhong, S.; Wei, L.; Zhao, C.; Yang, L.; Di, Z.; Francks, C.; Gong, G. Interhemispheric Relationship of Genetic Influence on Human Brain Connectivity. Cereb. Cortex 2021, 31, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Strick, P.L.; Dum, R.P.; Rathelot, J.A. The Cortical Motor Areas and the Emergence of Motor Skills: A Neuroanatomical Perspective. Annu. Rev. Neurosci. 2021, 44, 425–447. [Google Scholar] [CrossRef] [PubMed]
- Corey, D.M.; Hurley, M.M.; Foundas, A.L. Right and left handedness defined: A multivariate approach using hand preference and hand performance measures. Neuropsychiatry Neuropsychol. Behav. Neurol. 2001, 14, 144–152. [Google Scholar]
- Khitaryan, D. The phenomenon of symmetry-asymmetry through the prism of human motor activity. Sci. Herit. 2022, 88, 54–57. [Google Scholar] [CrossRef]
- Costa, H.J.T.; Abelairas-Gomez, C.; Arufe-Giráldez, V.; Pazos-Couto, J.M.; Barcala-Furelos, R. Influence of a physical education plan on psychomotor development profiles of preschool children. J. Hum. Sport Exerc. 2015, 10, 126–140. [Google Scholar]
- Olex-Zarychta, D.; Raczek, J. The relationship of movement time to hand-foot laterality patterns. Laterality 2008, 13, 439–455. [Google Scholar] [CrossRef]
- Gabbard, C. Foot laterality during childhood: A review. Int. J. Neurosci. 1993, 72, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Barut, C.; Ozer, C.M.; Sevinc, O.; Gumus, M.; Yunten, Z. Relationships between hand and foot preferences. Int. J. Neurosci. 2007, 117, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Musalek, M.; Scharoun, S.M.; Bryden, P.J. The link between cerebellar dominance and skilled hand performance in 8–10-year-old right-handed children. J. Mot. Behav. 2015, 47, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Bucsuházy, K.; Semela, M. Case Study: Reaction Time of Children According to Age. Procedia Eng. 2017, 187, 408–413. [Google Scholar] [CrossRef]
- Debrabant, J.; Gheysen, F.; Vingerhoets, G.; Van Waelvelde, H. Age-related differences in predictive response timing in children: Evidence from regularly relative to irregularly paced reaction time performance. Hum. Mov. Sci. 2012, 31, 801–810. [Google Scholar] [CrossRef]
- Mocanu, G.D.; Udrea, M.G. The effect of motion games on improving the psychomotor and intellectual performance of children with autism spectrum disorder and intellectual disabilities. Balneo PRM Res. J. 2021, 12, 289–300. [Google Scholar] [CrossRef]
- Páez-Maldonado, J.A.; Reigal, R.E.; Morillo-Baro, J.P.; Carrasco-Beltrán, H.; Hernández-Mendo, A.; Morales-Sánchez, V. Physical Fitness, Selective Attention and Academic Performance in a Pre-Adolescent Sample. Int. J. Environ. Res. Public Health 2020, 17, 6216. [Google Scholar] [CrossRef]
- Tehnology Systemul Fitlight®. Available online: https://www.fitlighttraining.com/products/fitlight-system (accessed on 23 August 2022).
- Bobak, C.; Barr, P.; O’Malley, A. Estimation of an inter-rater intra-class correlation coefficient that overcomes common assumption violations in the assessment of health measurement scales. BMC Med. Res. Methodol. 2018, 18, 93. [Google Scholar] [CrossRef]
- Shen, Y.C.; Franz, E.A. Hemispheric competition in left-handers on bimanual reaction time tasks. J. Mot. Behav. 2005, 37, 3–9. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.; Chen, W. Impact of Bilateral Coordinated Movement on Manipulative Skill Competency in Elementary School Students. Children 2021, 8, 517. [Google Scholar] [CrossRef]
- Gunnell, K.E.; Poitras, V.J.; LeBlanc, A.; Schibli, K.; Barbeau, K.; Hedayati, N.; Ponitfex, M.B.; Goldfield, G.S.; Dunlap, C.; Lehan, E.; et al. Physical activity and brain structure, brain function, and cognition in children and youth: A systematic review of randomized controlled trials. Ment. Health Phys. Act. 2021, 16, 105–127. [Google Scholar] [CrossRef]
- Stöckel, T.; Weigelt, M. Brain lateralisation and motor learning: Selective effects of dominant and non-dominant hand practice on the early acquisition of throwing skills. Laterality Asymmetries Brain Behav. Cogn. 2012, 17, 18–37. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, D.; Volkow, N.D. Laterality patterns of brain functional connectivity: Gender effects. Cereb. Cortex 2012, 22, 1455–1462. [Google Scholar] [CrossRef] [PubMed]
- Buenaventura Castillo, C.; Lynch, A.G.; Paracchini, S. Different laterality indexes are poorly correlated with one another but consistently show the tendency of males and females to be more left- and right-lateralized, respectively. R. Soc. Open Sci. 2020, 7, 191700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavão, S.L.; Pessarelli Visicato, L.; da Costa, C.S.N.; de Campos, A.C.; Rocha, N.A.C.F. Effect of the severity of manual impairment and hand dominance on anticipatory and compensatory postural adjustments during manual reaching in children with cerebral palsy. Res. Dev. Disabil. 2018, 83, 47–56. [Google Scholar] [CrossRef]
- Clerke, A.; Clerke, J. A literature review of the effect of handedness on isometric grip strength differences of the left and right hands. Am. J. Occup. Ther. 2001, 55, 206–211. [Google Scholar] [CrossRef] [Green Version]
- Iconomescu, T.M.; Mocanu, G.D.; Talaghir, L.G. The development of conditional motor skills by means of courses and applicative circuits in 6th grade girls during the physical education class. Hum. Sport Med. 2017, 17, 50–57. [Google Scholar] [CrossRef]
- McLean, S.; Morrell, L.J. Consistency in the strength of laterality in male, but not female, guppies across different behavioural contexts. Biol. Lett. 2020, 16, 20190870. [Google Scholar] [CrossRef]
- Loprinzi, P.D.; Franklin, J.; Farris, A.; Ryu, S. Handedness, Grip Strength, and Memory Function: Considerations by Biological Sex. Medicina 2019, 55, 444. [Google Scholar] [CrossRef] [Green Version]
- Hiraoka, K.; Igawa, K.; Kashiwagi, M.; Nakahara, C.; Oshima, Y.; Takakura, Y. The laterality of stop and go processes of the motor response in left-handed and right-handed individuals. Laterality 2018, 23, 51–66. [Google Scholar] [CrossRef]
- Main, J.C.; Carey, D.P. One hand or the other? Effector selection biases in right and left handers. Neuropsychologia 2014, 64, 300–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talboom, J.S.; De Both, M.D.; Naymik, M.A.; Schmidt, A.M.; Lewis, C.R.; Jepsen, W.M.; Håberg, A.K.; Rundek, T.; Levin, B.E.; Hoscheidt, S.; et al. Two separate, large cohorts reveal potential modifiers of age-associated variation in visual reaction time performance. NPJ Aging Mech. Dis. 2021, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Barthelemy, S.; Boulinguez, P. Manual reaction time asymmetries in human subjects: The role of movement planning and attention. Neurosci. Lett. 2001, 315, 41–44. [Google Scholar] [CrossRef]
- Wöstmann, M.; Vosskuhl, J.; Obleser, J.; Herrmann, C.S. Opposite effects of lateralised transcranial alpha versus gamma stimulation on auditory spatial attention. Brain Stimul. 2018, 11, 752–758. [Google Scholar] [CrossRef]
- Gautam, Y.; Bade, M. Effect of Auditory Interference on Visual Simple Reaction Time. Kathmandu Univ. Med. J. (KUMJ) 2017, 15, 329–331. [Google Scholar]
- Balasubramaniam, M.; Sivapalan, K.; Nishanthi, V.; Kinthusa, S.; Dilani, M. Effect of Dual-tasking on Visual and Auditory Simple Reaction Times. Indian J. Physiol. Pharmacol. 2015, 59, 194–198. [Google Scholar] [PubMed]
- Kennedy, D.M.; Wang, C.; Shea, C.H. Reacting while moving: Influence of right limb movement on left limb reaction. Exp. Brain Res. 2013, 230, 143–152. [Google Scholar] [CrossRef]
- Solanki, J.; Joshi, N.; Shah, C.; Mehta, H.B.; Gokhle, P.A. A study of correlation between auditory and visual reaction time in healthy adults. Int. J. Med. Public Health 2012, 2, 36–38. [Google Scholar] [CrossRef]
- Tudor, V.; Moanta, A.D.; Ghiţescu, I.G.; Trişcaş, N. Optimization of physical education classes by adapting the methods for developing the coordination ability in 5th grade students. Procedia-Soc. Behav. Sci. 2014, 117, 92–97. [Google Scholar] [CrossRef]
- Tarkka, I.M.; Hautasaari, P. Motor Action Execution in Reaction-Time Movements: Magnetoencephalographic Study. Am. J. Phys. Med. Rehabil. 2019, 98, 771–776. [Google Scholar] [CrossRef]
- Amini Vishteh, R.; Mirzajani, A.; Jafarzadehpour, E.; Darvishpour, S. Evaluation of Simple Visual Reaction Time of Different Colored Light Stimuli in Visually Normal Students. Clin. Optom. 2019, 11, 167–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barthélémy, S.; Boulinguez, P. Orienting visuospatial attention generates manual reaction time asymmetries in target detection and pointing. Behav. Brain Res. 2002, 33, 109–116. [Google Scholar] [CrossRef]
- Yang, Y.; Weiss, P.H.; Fink, G.R.; Chen, Q. Hand preference for the visual and auditory modalities in humans. Sci. Rep. 2021, 11, 7868. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Clark, J.E. The "Motor" in Implicit Motor Sequence Learning: A Foot-stepping Serial Reaction Time Task. J. Vis. Exp. 2018, 3, 56483. [Google Scholar] [CrossRef] [Green Version]
- Le Mansec, Y.; Dorel, S.; Nordez, A.; Jubeau, M. Is reaction time altered by mental or physical exertion? Eur. J. Appl. Physiol. 2019, 119, 1323–1335. [Google Scholar] [CrossRef] [PubMed]
- Alley, S.J.; Schoeppe, S.; Rebar, A.L.; Hayman, M.; Vandelanotte, C. Age differences in physical activity intentions and implementation intention preferences. J. Behav. Med. 2018, 41, 406–415. [Google Scholar] [CrossRef] [PubMed]
- Leoni, E.; Beltrami, P.; Poletti, G.; Baldi, E.; Sacchetti, R.; Garulli, A.; Masotti, A.; Bianco, L.; Ventura, F.A.; Pandolfi, P.; et al. Survey on sports practice and physical activity of primary school children living in the area of Bologna Local Health Unit in relation with some individual and environmental variables. Ann. Ig. 2008, 20, 441–453. [Google Scholar]
- Bermejo-Cantarero, A.; Álvarez-Bueno, C.; Martinez-Vizcaino, V.; García-Hermoso, A.; Torres-Costoso, A.I.; Sánchez-López, M. Association between physical activity, sedentary behavior, and fitness with health related quality of life in healthy children and adolescents: A protocol for a systematic review and meta-analysis. Medicine 2017, 96, e6407. [Google Scholar] [CrossRef]
- Oancea, V.; Simion, G.; Tohanean, D.I. Factorul Fizic în Jocul de Fotbal [Physical Factor in Football. Romanian]; Publishing House Transilvania University: Braşov, Romania, 2007; pp. 32–41. [Google Scholar]
- Neil-Sztramko, S.E.; Caldwell, H.; Dobbins, M. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6 to 18. Cochrane Database Syst. Rev. 2021, 9, CD007651. [Google Scholar] [CrossRef]
- Cojanu, F.; Cătănescu, A. Study on involvement in learning technology components psihomotricity to play tennis. Ovidius Univ. Ann. Ser. Phys. Educ. Sport/Sci. Mov. Health 2010, 10, 457–460. [Google Scholar]
Fitlight 4 Spots in Line—Manual Execution | |||||||||
---|---|---|---|---|---|---|---|---|---|
Hand | Group | XTi ± SD | XTf ± SD | DX ± SD | 95% CI | t | p | d | |
Upper | Lower | ||||||||
Right | Female | 10.627 ± 2.040 | 11.986 ± 1.172 | 1.359 ± 0.426 | 1.536 | 0.419 | 3.242 | 0.009 | 0.644 |
Male | 10.727 ± 1.661 | 11.753 ± 1.712 | 1.025 ± 0.307 | 1.519 | 0.531 | 4.074 | 0.000 | 0.608 | |
Left | Female | 9.437 ± 1.365 | 10.193 ± 1.410 | 0.756 ± 0.762 | 1.507 | 0.604 | 4.591 | 0.000 | 0.760 |
Male | 9.334 ± 1.045 | 9.938 ± 1.064 | 0.604 ± 0.547 | 0.738 | 0.130 | 1.374 | 0.000 | 0.520 |
Fitlight 4 Spots in a Line—Foot Execution | |||||||||
---|---|---|---|---|---|---|---|---|---|
Foot | Group | XTi ± SD | XTf ± SD | DX ± SD | 95% CI | t | p | d | |
Upper | Lower | ||||||||
Right | Female | 10.160 ± 1.687 | 10.979 ± 1.892 | 0.819 ± 0.115 | 0.996 | 0.358 | 2.699 | 0.002 | 0.456 |
Male | 10.245 ± 2.586 | 11.871 ± 2.137 | 1.625 ± 0.863 | 1.806 | 0.744 | 3.224 | 0.001 | 0.685 | |
Left | Female | 9.321 ± 2.366 | 10.650 ± 2.498 | 1.329 ± 0.346 | 1.670 | 0.510 | 3.901 | 0.000 | 0.546 |
Male | 9.417 ± 2.448 | 11.024 ± 2.832 | 1.607 ± 0.255 | 1.832 | 0.681 | 4.868 | 0.000 | 0.607 |
Fitlight 8 Square Spotlights—Manual Execution | |||||||||
---|---|---|---|---|---|---|---|---|---|
Hand | Group | XTi ± SD | XTf ± SD | DX ± SD | 95% CI | t | p | d | |
Upper | Lower | ||||||||
Right | Female | 10.644 ± 2.133 | 11.827 ± 2.456 | 1.183 ± 0.280 | 1.437 | 0.672 | 2.293 | 0.012 | 0.514 |
Male | 10.524 ± 2.128 | 11.761 ± 2.095 | 1.080 ± 0.123 | 1.234 | 0.589 | 2.072 | 0.000 | 0.585 | |
Left | Female | 10.413 ± 2.154 | 11.491 ± 2.590 | 1.078 ± 0.887 | 1.317 | 0.738 | 2.103 | 0.036 | 0.452 |
Male | 10.451 ± 1.667 | 11.322 ± 2.024 | 0.871 ± 0.346 | 1.317 | 0.436 | 1.897 | 0.004 | 0.469 |
Fitlight 8 Spots in a Square—Foot Execution | |||||||||
---|---|---|---|---|---|---|---|---|---|
Foot | Group | XTi ± SD | XTf ± SD | DX ± SD | 95% CI | t | p | d | |
Upper | Lower | ||||||||
Right | Female | 9.703 ± 1.686 | 10.454 ± 1.702 | 0.750 ± 0.569 | 0.886 | 0.286 | 3.576 | 0.015 | 0.443 |
Male | 9.801 ± 1.509 | 11.017 ± 2.012 | 1.216 ± 0.791 | 1.670 | 0.762 | 5.264 | 0.000 | 0.683 | |
Left | Female | 9.453 ± 1.498 | 10.112 ± 1.711 | 0.659 ± 0.477 | 0.152 | 0.563 | 3.169 | 0.011 | 0.409 |
Male | 9.711 ± 1.602 | 10.797 ± 2.103 | 1.086 ± 0.629 | 1.326 | 0.539 | 5.017 | 0.000 | 0.580 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badau, D.; Badau, A. Optimizing Reaction Time in Relation to Manual and Foot Laterality in Children Using the Fitlight Technological Systems. Sensors 2022, 22, 8785. https://doi.org/10.3390/s22228785
Badau D, Badau A. Optimizing Reaction Time in Relation to Manual and Foot Laterality in Children Using the Fitlight Technological Systems. Sensors. 2022; 22(22):8785. https://doi.org/10.3390/s22228785
Chicago/Turabian StyleBadau, Dana, and Adela Badau. 2022. "Optimizing Reaction Time in Relation to Manual and Foot Laterality in Children Using the Fitlight Technological Systems" Sensors 22, no. 22: 8785. https://doi.org/10.3390/s22228785
APA StyleBadau, D., & Badau, A. (2022). Optimizing Reaction Time in Relation to Manual and Foot Laterality in Children Using the Fitlight Technological Systems. Sensors, 22(22), 8785. https://doi.org/10.3390/s22228785