Sensing Trace-Level Metal Elements in Water Using Chirped Femtosecond Laser Pulses in the Filamentation Regime
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ciucci, A.; Corsi, M.; Palleschi, V.; Rastelli, S.; Salvetti, A.; Tognoni, E. New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy. Appl. Spectrosc. 1999, 53, 960–964. [Google Scholar] [CrossRef]
- Fernandes Andrade, D.; Pereira-Filho, E.R.; Amarasiriwardena, D. Current trends in laser-induced breakdown spectroscopy: A tutorial review. Appl. Spectrosc. Rev. 2021, 56, 98–114. [Google Scholar] [CrossRef]
- Jantzi, S.C.; Motto-Ros, V.; Trichard, F.; Markushin, Y.; Melikechi, N.; De Giacomo, A. Sample treatment and preparation for laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2016, 115, 52–63. [Google Scholar] [CrossRef]
- Lazic, V.; Jovićević, S. Laser induced breakdown spectroscopy inside liquids: Processes and analytical aspects. Spectrochim. Acta Part B At. Spectrosc. 2014, 101, 288–311. [Google Scholar] [CrossRef]
- Pasquini, C.; Cortez, J.; Silva, L.; Gonzaga, F.B. Laser induced breakdown spectroscopy. J. Braz. Chem. Soc. 2007, 18, 463–512. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yin, H.; Wang, Z.; Fu, Y.; Li, Z.; Ni, W. Quantitative carbon analysis in coal by combining data processing and spatial confinement in laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2015, 111, 102–107. [Google Scholar] [CrossRef]
- Ruiz, J.; Delgado, T.; Cabalín, L.; Laserna, J. At-line monitoring of continuous casting sequences of steel using discriminant function analysis and dual-pulse laser-induced breakdown spectroscopy. J. Anal. At. Spectrom. 2017, 32, 1119–1128. [Google Scholar] [CrossRef]
- Silva, T.V.; Hubinger, S.Z.; Neto, J.A.G.; Milori, D.M.B.P.; Ferreira, E.J.; Ferreira, E.C. Potential of Laser Induced Breakdown Spectroscopy for analyzing the quality of unroasted and ground coffee. Spectrochim. Acta Part B At. Spectrosc. 2017, 135, 29–33. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Chen, L.; Liu, F.; Zhou, F.; Peng, J.; Sun, M. Fast classification of geographical origins of honey based on laser-induced breakdown spectroscopy and multivariate analysis. Sensors 2020, 20, 1878. [Google Scholar] [CrossRef] [Green Version]
- Kiefer, J.; Tröger, J.; Li, Z.; Aldén, M. Laser-induced plasma in methane and dimethyl ether for flame ignition and combustion diagnostics. Appl. Phys. B Lasers Opt. 2011, 103, 229–236. [Google Scholar] [CrossRef]
- Zang, H.; Yao, D.; Wang, S.; Fu, Y.; Zhang, W.; Chen, S.; Li, H.; Xu, H. In situ determination of the equivalence ratio in a methane/air flow field by femtosecond filament excitation. Laser Phys. 2020, 30, 035402. [Google Scholar] [CrossRef]
- Kaiser, J.; Novotný, K.; Martin, M.Z.; Hrdlička, A.; Malina, R.; Hartl, M.; Adam, V.; Kizek, R. Trace elemental analysis by laser-induced breakdown spectroscopy—Biological applications. Surf. Sci. Rep. 2012, 67, 233–243. [Google Scholar] [CrossRef]
- Rehse, S.; Salimnia, H.; Miziolek, A. Laser-induced breakdown spectroscopy (LIBS): An overview of recent progress and future potential for biomedical applications. J. Med. Eng. Technol. 2012, 36, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Li, Y.; Gu, X.; Bao, J.; Yang, H.; Sun, L. Laser-induced breakdown spectroscopy application in environmental monitoring of water quality: A review. Environ. Monit. Assess. 2014, 186, 8969–8980. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, T.; Li, H. Application of laser-induced breakdown spectroscopy (LIBS) in environmental monitoring. Spectrochim. Acta Part B At. Spectrosc. 2021, 181, 106218. [Google Scholar] [CrossRef]
- Arca, G.; Ciucci, A.; Palleschi, V.; Rastelli, S.; Tognoni, E. Trace element analysis in water by the laser-induced breakdown spectroscopy technique. Appl. Spectrosc. 1997, 51, 1102–1105. [Google Scholar] [CrossRef]
- Keerthi, K.; George, S.D.; Kulkarni, S.D.; Chidangil, S.; Unnikrishnan, V. Elemental analysis of liquid samples by laser induced breakdown spectroscopy (LIBS): Challenges and potential experimental strategies. Opt. Laser. Technol. 2022, 147, 107622. [Google Scholar] [CrossRef]
- Lee, Y.; Oh, S.-W.; Han, S.-H. Laser-induced breakdown spectroscopy (LIBS) of heavy metal ions at the sub-parts per million level in water. Appl. Spectrosc. 2012, 66, 1385–1396. [Google Scholar] [CrossRef]
- Li, H.; Zang, H.; Xu, H.; Sun, H.B.; Baltuška, A.; Polynkin, P. Robust Remote Sensing of Trace-Level Heavy-Metal Contaminants in Water Using Laser Filaments. Glob. Chall. 2019, 3, 1800070. [Google Scholar] [CrossRef] [Green Version]
- Bergé, L.; Skupin, S.; Nuter, R.; Kasparian, J.; Wolf, J.-P. Ultrashort filaments of light in weakly ionized, optically transparent media. Rep. Prog. Phys. 2007, 70, 1633. [Google Scholar] [CrossRef]
- Couairon, A.; Mysyrowicz, A. Femtosecond filamentation in transparent media. Phys. Rep. 2007, 441, 47–189. [Google Scholar] [CrossRef]
- Liu, X.-L.; Cheng, W.; Petrarca, M.; Polynkin, P. Measurements of fluence profiles in femtosecond laser filaments in air. Opt. Lett. 2016, 41, 4751–4754. [Google Scholar] [CrossRef] [PubMed]
- Chin, S.; Hosseini, S.; Liu, W.; Luo, Q.; Théberge, F.; Aközbek, N.; Becker, A.; Kandidov, V.; Kosareva, O.; Schröder, H. The propagation of powerful femtosecond laser pulses in opticalmedia: Physics, applications, and new challenges. Can. J. Phys. 2005, 83, 863–905. [Google Scholar] [CrossRef]
- Xu, H.; Cheng, Y.; Chin, S.L.; Sun, H.B. Femtosecond laser ionization and fragmentation of molecules for environmental sensing. Laser Photonics Rev. 2015, 9, 275–293. [Google Scholar] [CrossRef]
- Fu, Y.; Cao, J.; Yamanouchi, K.; Xu, H. Air-laser-based standoff coherent Raman spectrometer. Ultrafast Sci. 2022, 2022, 9867028. [Google Scholar] [CrossRef]
- Su, Y.; Wang, S.; Yao, D.; Fu, Y.; Zang, H.; Xu, H.; Polynkin, P. Stand-off fabrication of irregularly shaped, multi-functional hydrophobic and antireflective metal surfaces using femtosecond laser filaments in air. Appl. Surf. Sci. 2019, 494, 1007–1012. [Google Scholar] [CrossRef]
- Zang, H.; Li, H.; Zhang, W.; Fu, Y.; Chen, S.; Xu, H.; Li, R. Robust and ultralow-energy-threshold ignition of a lean mixture by an ultrashort-pulsed laser in the filamentation regime. Light-Sci. Appl. 2021, 10, 1–7. [Google Scholar] [CrossRef]
- Chen, S.; Cong, X.; Chen, J.; Cao, J.; Fu, Y.; Wang, S.; Zang, H.; Li, H.; Xu, H. The key role of the semiconductor property of water in femtosecond laser-induced plasma spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2022, 195, 106499. [Google Scholar] [CrossRef]
- Williams, F.; Varma, S.; Hillenius, S. Liquid water as a lone-pair amorphous semiconductor. J. Chem. Phys. 1976, 64, 1549–1554. [Google Scholar] [CrossRef]
- Louzon, E.; Henis, Z.; Pecker, S.; Ehrlich, Y.; Fisher, D.; Fraenkel, M.; Zigler, A. Reduction of damage threshold in dielectric materials induced by negatively chirped laser pulses. Appl. Phys. Lett. 2005, 87, 241903. [Google Scholar] [CrossRef]
Sample | Ca | Na | K |
---|---|---|---|
Concentrations given by the manufacturers | |||
Nongfu Spring (S2) | 4.0~10.0 | 2.0~6.8 | 1.0~2.5 |
Quanyangquan (S3) | 3.1~7.9 | 1.7~5.8 | 0.8~3.0 |
Concentrations calculated by the FIBS technique | |||
Tap water (S4) | 18.5~35.7 | 3.8~13.2 | 2.6~6.1 |
Jingyuetan Park (S5) | 16.8~32.5 | 3.8~13.0 | 2.0~4.6 |
Nanhu Park (S6) | 20.0~38.6 | 5.4~18.4 | 2.8~6.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Cong, X.; Chen, J.; Zang, H.; Li, H.; Xu, H. Sensing Trace-Level Metal Elements in Water Using Chirped Femtosecond Laser Pulses in the Filamentation Regime. Sensors 2022, 22, 8775. https://doi.org/10.3390/s22228775
Chen S, Cong X, Chen J, Zang H, Li H, Xu H. Sensing Trace-Level Metal Elements in Water Using Chirped Femtosecond Laser Pulses in the Filamentation Regime. Sensors. 2022; 22(22):8775. https://doi.org/10.3390/s22228775
Chicago/Turabian StyleChen, Shanming, Xun Cong, Junyan Chen, Hongwei Zang, Helong Li, and Huailiang Xu. 2022. "Sensing Trace-Level Metal Elements in Water Using Chirped Femtosecond Laser Pulses in the Filamentation Regime" Sensors 22, no. 22: 8775. https://doi.org/10.3390/s22228775
APA StyleChen, S., Cong, X., Chen, J., Zang, H., Li, H., & Xu, H. (2022). Sensing Trace-Level Metal Elements in Water Using Chirped Femtosecond Laser Pulses in the Filamentation Regime. Sensors, 22(22), 8775. https://doi.org/10.3390/s22228775