Digitizing a Therapeutic: Development of an Augmented Reality Dual-Task Training Platform for Parkinson’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. DART Platform Development and Utilization
2.2. Creating and Implementing Patient-specific DTT Sessions
2.3. Motor Task Development
2.4. Cognitive Task Development
2.5. The Digital Avatar Experience
2.6. Synchronous User and Provider Experience
2.7. Asynchronous Clinician Interface: Post-DTT Session Review of Biomechanical and Cognitive Outcomes
2.7.1. Study Design
2.7.2. Statistical Analysis
3. Results
3.1. Feasibility and Usability
3.2. The DART Platform Induces Dual-Task Interference in Individuals with PD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sutherland, I.E. The Ultimate Display. In Proceedings of the Congress of the International Federation of Information Processing (IFIP), New York, NY, USA, 24–29 May 1965; pp. 506–508. [Google Scholar]
- Sutherland, I.E. A head-mounted three dimensional display. In Proceedings of the AFIPS ’68 (Fall, part I), San Francisco, CA, USA, 9–11 December 1968. [Google Scholar]
- Azuma, R.T. A Survey of Augmented Reality. Presence 1997, 6, 355–385. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, N.; Wang, B.; Lv, X. Trends in the Use of Augmented Reality, Virtual Reality, and Mixed Reality in Surgical Research: A Global Bibliometric and Visualized Analysis. Indian J. Surg. 2022, 84, 52–69. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, D.; Badawy, R.; Mathur, S.; Tome, M.; Rochester, L. Digital Progression Biomarkers as Novel Endpoints in Clinical Trials: A Multistakeholder Perspective. J. Park. Dis. 2021, 11, S103–S109. [Google Scholar] [CrossRef] [PubMed]
- Pires, A.O.; Teixeira, F.G.; Mendes-Pinheiro, B.; Serra, S.C.; Sousa, N.; Salgado, A.J. Old and new challenges in Parkinson’s disease therapeutics. Prog. Neurobiol. 2017, 156, 69–89. [Google Scholar] [CrossRef]
- Vijiaratnam, N.; Simuni, T.; Bandmann, O.; Morris, H.R.; Foltynie, T. Progress towards therapies for disease modification in Parkinson’s disease. Lancet Neurol. 2021, 20, 559–572. [Google Scholar] [CrossRef]
- Espay, A.J.; Kalia, L.V.; Gan-Or, Z.; Williams-Gray, C.H.; Bedard, P.L.; Rowe, S.M.; Morgante, F.; Fasano, A.; Stecher, B.; Kauffman, M.A.; et al. Disease modification and biomarker development in Parkinson disease: Revision or reconstruction? Neurology 2020, 94, 481–494. [Google Scholar] [CrossRef] [Green Version]
- FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Resource; FDA-NIH Biomarker Working Group: Silver Spring, MD, USA, 2016. [Google Scholar]
- Elor, A.; Kurniawan, S. The Ultimate Display for Physical Rehabilitation: A Bridging Review on Immersive Virtual Reality. Front. Virtual Real. 2020, 1, 585993. [Google Scholar] [CrossRef]
- Keshner, E.A.; Lamontagne, A. The Untapped Potential of Virtual Reality in Rehabilitation of Balance and Gait in Neurological Disorders. Front. Virtual Real. 2021, 2, 641650. [Google Scholar] [CrossRef]
- Rhodes, J.K.; Schindler, D.; Rao, S.M.; Venegas, F.; Bruzik, E.T.; Gabel, W.; Williams, J.R.; Phillips, G.A.; Mullen, C.C.; Freiburger, J.L.; et al. Multiple Sclerosis Performance Test: Technical Development and Usability. Adv. Ther. 2019, 36, 1741–1755. [Google Scholar] [CrossRef] [Green Version]
- Rudick, R.A.; Miller, D.; Bethoux, F.; Rao, S.M.; Lee, J.-C.; Stough, D.; Reece, C.; Schindler, D.; Mamone, B.; Alberts, J. The Multiple Sclerosis Performance Test (MSPT): An iPad-based disability assessment tool. J. Vis. Exp. 2014, 30, e51318. [Google Scholar] [CrossRef] [Green Version]
- Macaron, G.; Moss, B.P.; Li, H.; Baldassari, L.E.; Rao, S.M.; Schindler, D.; Alberts, J.L.; Weber, M.; Ayers, M.; Bethoux, F.; et al. Technology-enabled assessments to enhance multiple sclerosis clinical care and research. Neurol. Clin. Pract. 2019, 10, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Alberts, J.L.; Modic, M.T.; Udeh, B.; Dey, T.; Cherian, K.; Lu, X.; Figler, R.; Russman, A.; Linder, S.M. Development and Implementation of a Multi-Disciplinary Technology Enhanced Care Pathway for Youth and Adults with Concussion. J. Vis. Exp. 2019, 143, e58962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberts, J.L.; Modic, M.T.; Udeh, B.L.; Zimmerman, N.; Cherian, K.; Lu, X.; Gray, R.; Figler, R.; Russman, A.; Linder, S.M. A Technology Enabled Concussion Care Pathway Reduces Costs and Enhances Care. Phys. Ther. 2019, 100, 136–148. [Google Scholar] [CrossRef]
- Linder, S.M.; Cruickshank, J.; Zimmerman, N.M.; Figler, R.; Alberts, J.L. A technology-enabled electronic incident report to document and facilitate management of sport concussion: A cohort study of youth and young adults. Medicine 2019, 98, e14948. [Google Scholar] [CrossRef] [PubMed]
- Koop, M.M.; Rosenfeldt, A.B.; Johnston, J.D.; Streicher, M.C.; Qu, J.; Alberts, J.L. The HoloLens Augmented Reality System Provides Valid Measures of Gait Performance in Healthy Adults. IEEE Trans. Hum.-Mach. Syst. 2020, 50, 584–592. [Google Scholar] [CrossRef]
- Sun, R.; Aldunate, R.G.; Sosnoff, J.J. The Validity of a Mixed Reality-Based Automated Functional Mobility Assessment. Sensors 2019, 19, 2183. [Google Scholar] [CrossRef] [Green Version]
- Geerse, D.J.; Coolen, B.; Roerdink, M. Quantifying Spatiotemporal Gait Parameters with HoloLens in Healthy Adults and People with Parkinson’s Disease: Test-Retest Reliability, Concurrent Validity, and Face Validity. Sensors 2020, 20, 3216. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, H.; Zhang, L.; El Saddik, A. Technical Evaluation of HoloLens for Multimedia: A First Look. IEEE MultiMedia 2018, 25, 8–18. [Google Scholar] [CrossRef]
- Leach, J.M.; Mellone, S.; Palumbo, P.; Bandinelli, S.; Chiari, L. Natural turn measures predict recurrent falls in community-dwelling older adults: A longitudinal cohort study. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Cheng, F.-Y.; Yang, Y.-R.; Wang, C.-J.; Wu, Y.-R.; Cheng, S.-J.; Wang, H.-C.; Wang, R.-Y. Factors Influencing Turning and Its Relationship with Falls in Individuals with Parkinson’s Disease. PLoS ONE 2014, 9, e93572. [Google Scholar] [CrossRef]
- Koop, M.M.; Rosenfeldt, A.B.; Owen, K.; Penko, A.L.; Streicher, M.C.; Albright, A.; Alberts, J.L. The Microsoft HoloLens 2 Provides Accurate Measures of Gait, Turning, and Functional Mobility in Healthy Adults. Sensors 2022, 22, 2009. [Google Scholar] [CrossRef] [PubMed]
- McIsaac, T.L.; Lamberg, E.M.; Muratori, L.M. Building a Framework for a Dual Task Taxonomy. BioMed Res. Int. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayot, M.; Dujardin, K.; Tard, C.; Defebvre, L.; Bonnet, C.T.; Allart, E.; Delval, A. The interaction between cognition and motor control: A theoretical framework for dual-task interference effects on posture, gait initiation, gait and turning. Neurophysiol. Clin. Clin. Neurophysiol. 2018, 48, 361–375. [Google Scholar] [CrossRef] [PubMed]
- Vitorio, R.; Hasegawa, N.; Carlson-Kuhta, P.; Nutt, J.G.; Horak, F.B.; Mancini, M.; Shah, V.V. Dual-Task Costs of Quantitative Gait Parameters While Walking and Turning in People with Parkinson’s Disease: Beyond Gait Speed. J. Park. Dis. 2021, 11, 653–664. [Google Scholar] [CrossRef]
- Rosenfeldt, A.B.; Penko, A.L.; Streicher, M.C.; Zimmerman, N.M.; Koop, M.M.; Albeets, J.L. Improvements in temporal and postural aspects of gait vary following single- and multi-modal training in individuals with Parkinson’s disease. Park. Relat. Disord. 2019, 64, 280–285. [Google Scholar] [CrossRef]
- Wu, T.; Hallett, M.; Chan, P. Motor automaticity in Parkinson’s disease. Neurobiol. Dis. 2015, 82, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Mirelman, A.; Bonato, P.; Camicioli, R.; Ellis, T.D.; Giladi, N.; Hamilton, J.L.; Hass, C.J.; Hausdorff, J.M.; Pelosin, E.; Almeida, Q.J. Gait impairments in Parkinson’s disease. Lancet Neurol. 2019, 18, 697–708. [Google Scholar] [CrossRef]
- Penko, A.L.; Streicher, M.C.; Dey, T.; Rosenfeldt, A.B.; Alberts, J.L. Parkinson’s gait kinematics deteriorates across multiple cognitive domains under dual-task paradigms. Clin. Neurol. Neurosurg. 2020, 197, 106083. [Google Scholar] [CrossRef]
- Penko, A.L.; Streicher, M.C.; Koop, M.M.; Dey, T.; Rosenfeldt, A.B.; Bazyk, A.S.; Alberts, J.L. Dual-task Interference Disrupts Parkinson’s Gait Across Multiple Cognitive Domains. Neuroscience 2018, 379, 375–382. [Google Scholar] [CrossRef]
- Yogev-Seligmann, G.; Hausdorff, J.M.; Giladi, N. The role of executive function and attention in gait. Mov. Disord. 2008, 23, 329–342. [Google Scholar] [CrossRef]
- Harvey, P.D. Domains of cognition and their assessment. Dialog. Clin. Neurosci. 2019, 21, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Franchignoni, F.; Horak, F.; Godi, M.; Nardone, A.; Giordano, A. Using psychometric techniques to improve the Balance Evaluation Systems Test: The mini-BESTest. J. Rehabil. Med. 2010, 42, 323–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfeiffer, E. A Short Portable Mental Status Questionnaire for the Assessment of Organic Brain Deficit in Elderly Patients. J. Am. Geriatr. Soc. 1975, 23, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Brooke, S. Chapter 11. SUS: A ‘Quick and Dirty’ Usability Scale. In Usability Evaluation in Industry; Jordan, P.W., Thomas, B., Weerdmeester, A., McClelland, I.I., Eds.; Taylor & Francis: London, UK, 1996; pp. 189–194. [Google Scholar]
- Sauro, J.; Lewis, J.R. Quantifying the User Experience: Practical Statistics for User Research, 2nd ed.; Elsevier: Cambridge, MA, USA, 2016. [Google Scholar]
- Bangor, A.; Kortum, P.T.; Miller, J.T. An Empirical Evaluation of the System Usability Scale. Int. J. Hum.-Comput. Interact. 2008, 24, 574–594. [Google Scholar] [CrossRef]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez- Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef]
- Lee, A.; Hellmers, N.; Vo, M.; Wang, F.; Popa, P.; Barkan, S.; Patel, D.; Campbell, C.; Henchcliffe, C.; Sarva, H. Can google glass™ technology improve freezing of gait in parkinsonism? A pilot study. Disabil. Rehabil. Assist. Technol. 2020, 1–11. [Google Scholar] [CrossRef]
- Pew Research Center. Techn Adoption Climbs Among Older Adults; Pew Research Center: Washington, DC, USA, May 2017. [Google Scholar]
- Cometti, C.; Païzis, C.; Casteleira, A.; Pons, G.; Babault, N. Effects of mixed reality head-mounted glasses during 90 minutes of mental and manual tasks on cognitive and physiological functions. PeerJ 2018, 6, e5847. [Google Scholar] [CrossRef] [Green Version]
- Montero-Odasso, M.; Casas, A.; Hansen, K.T.; Bilski, P.; Gutmanis, I.; Wells, J.L.; Borrie, M.J. Quantitative gait analysis under dual-task in older people with mild cognitive impairment: A reliability study. J. Neuroeng. Rehabil. 2009, 6, 35. [Google Scholar] [CrossRef] [Green Version]
- Beauchet, O.; Freiberger, E.; Annweiler, C.; Kressig, R.W.; Herrmann, F.R.; Allali, G. Test-retest reliability of stride time variability while dual tasking in healthy and demented adults with frontotemporal degeneration. J. Neuroeng. Rehabil. 2011, 8, 37. [Google Scholar] [CrossRef]
- Leone, C.; Patti, F.; Feys, P. Measuring the cost of cognitive-motor dual tasking during walking in multiple sclerosis. Mult. Scler. J. 2014, 21, 123–131. [Google Scholar] [CrossRef]
- Cho, K.H.; Lee, H.J.; Lee, W.H. Test–retest reliability of the GAITRite walkway system for the spatio-temporal gait parameters while dual-tasking in post-stroke patients. Disabil. Rehabil. 2014, 37, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Strouwen, C.; Molenaar, E.A.L.M.; Munks, L.; Keus, S.H.J.; Zijlmans, J.C.M.; Vandenberghe, W.; Bloem, B.R.; Nieuwboer, A. Training dual tasks together or apart in Parkinson’s disease: Results from the DUALITY trial. Mov. Disord. 2017, 32, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Geroin, C.; Nonnekes, J.; de Vries, N.M.; Strouwen, C.; Smania, N.; Tinazzi, M.; Nieuwboer, A.; Nloem, B.R. Does dual-task training improve spatiotemporal gait parameters in Parkinson’s disease? Park. Relat. Disord. 2018, 55, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, C.S.M.; Moscardó, L.D.; López-Pascual, J.; Serra-Añó, P.; Tomás, J.M. Effects of Dual-Task Group Training on Gait, Cognitive Executive Function, and Quality of Life in People With Parkinson Disease: Results of Randomized Controlled DUALGAIT Trial. Arch. Phys. Med. Rehabil. 2020, 101, 1849–1856. [Google Scholar] [CrossRef]
PD Gait Deficit | Task(s) | Task Description |
---|---|---|
Decreased Gait Automaticity | Forward, Backward, Lateral Walking | Multi-directional walking; auditory cues are provided to address PD gait deficits such as decreased arm swing and heel strike. |
Decreased Gait Velocity | Pace Setter | Based on the individual, a gait speed that is 0.2–0.3 m/s greater than their self-selected comfortable speed is programmed as a target. A colored icon provides instantaneous feedback to the participant (red if stopped; orange if ambulating below target velocity; green if meeting or exceeding target velocity). |
Decreased Amplitude of Movement | Marching, Heel Kicking, Arm Swings, Targeted Arm Swings | Motor tasks focused on maximizing upper and lower extremity movement amplitude, coordination, and velocity. Targeted arm swings provides the participant with visual targets customized to their arm length in order to increase arm swing path length. |
Decreased Step Length | Footprint Targets | Left and right footprint targets are displayed on the floor during forward walking. Step length and width are customizable to each participant. |
Impaired Turning, Gait Initiation, and Freezing of Gait | Gait Initiation, Figure of Eight | Gait Initiation: The participant walks to a randomly generated target that is populated in the room. The participant is required to visually scan, turn, and initiate gait toward the next target. Upon arrival at the target, a new target is populated in a randomized location. Figure of Eight: The participant completes repetitive left and right hand turns in the looping figure-of-eight course. |
Impaired Object Navigation | Obstacle Course | A closed-loop course with randomly generated obstacles including pillars, large and small obstacles and curbs, and a doorframe. The number and type of obstacles are customizable. |
Postural Control Disturbances | Upper and Lower Extremity Targeted Movements, Flying Targets | Targeted Movements: Starting from a static standing position, multi-directional stepping (lower extremity) and reaching (upper extremity) targets appear to challenge anticipatory weight shifting and step initiation. Flying Targets: During gait, upper extremity targets appear and the user must reach for the target while maintaining dynamic postural control during gait. |
N = 48 | |
---|---|
Age (years) | 69.1 ± 6.2 |
Gender | |
Male | 36 (75.0%) |
Female | 12 (25.0%) |
Race | |
White | 42 (87.5%) |
Black | 5 (10.4%) |
Asian | 1 (2.1%) |
Ethnicity | |
Hispanic or Latino | 0 (0%) |
Not Hispanic or Latino | 48 (100%) |
Years of education | 16.7 ± 2.3 |
Employment status | |
Employed full-time | 4 (8.3%) |
Employed part-time | 3 (6.3%) |
Retired due to PD | 12 (25.0%) |
Retired by choice | 29 (60.4%) |
Hoehn and Yahr stage | |
I | 0 (0.0%) |
II | 34 (70.8%) |
III | 14 (29.2%) |
Disease duration (years) | 6.3 ± 4.2 |
MDS-UPDRS III score (on medication) | 35.7 ± 12.7 |
Levodopa equivalent dose (mg) | 643 ± 320 |
SPMSQ number of errors | 0.52 ± 0.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alberts, J.L.; Kaya, R.D.; Scelina, K.; Scelina, L.; Zimmerman, E.M.; Walter, B.L.; Rosenfeldt, A.B. Digitizing a Therapeutic: Development of an Augmented Reality Dual-Task Training Platform for Parkinson’s Disease. Sensors 2022, 22, 8756. https://doi.org/10.3390/s22228756
Alberts JL, Kaya RD, Scelina K, Scelina L, Zimmerman EM, Walter BL, Rosenfeldt AB. Digitizing a Therapeutic: Development of an Augmented Reality Dual-Task Training Platform for Parkinson’s Disease. Sensors. 2022; 22(22):8756. https://doi.org/10.3390/s22228756
Chicago/Turabian StyleAlberts, Jay L., Ryan D. Kaya, Kathryn Scelina, Logan Scelina, Eric M. Zimmerman, Benjamin L. Walter, and Anson B. Rosenfeldt. 2022. "Digitizing a Therapeutic: Development of an Augmented Reality Dual-Task Training Platform for Parkinson’s Disease" Sensors 22, no. 22: 8756. https://doi.org/10.3390/s22228756