Optical Beam Steerable Visible Light Communication (VLC) System Supporting Multiple Users Using RGB and Orthogonal Frequency Division Multiplexed (OFDM) Non-Orthogonal Multiple Access (NOMA)
Abstract
1. Introduction
2. Algorithm and Experiment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chow, C.W.; Yeh, C.H.; Liu, Y.; Lai, Y.; Wei, L.Y.; Hsu, C.W.; Chen, G.H.; Liao, X.L.; Lin, K.H. Enabling Techniques for Optical Wireless Communication Systems. Proc. OFC 2020, M2F.1. (Invited). Available online: https://ieeexplore.ieee.org/document/9083268 (accessed on 24 October 2022).
- Chi, N.; Zhou, Y.; Wei, Y.; Hu, F. Visible light communication in 6G: Advances, challenges, and prospects. IEEE Veh. Technol. Mag. 2020, 15, 93–102. [Google Scholar] [CrossRef]
- Li, C.Y.; Lu, H.H.; Tsai, W.S.; Feng, C.Y.; Chou, C.R.; Chen, Y.H.; Nainggolan, A. White-lighting and WDM-VLC system using transmission gratings and an engineered diffuser. Opt. Lett. 2020, 45, 6206–6209. [Google Scholar] [CrossRef]
- Wei, L.Y.; Liu, Y.; Chow, C.W.; Chen, G.H.; Peng, C.W.; Guo, P.C.; Tsai, J.F.; Yeh, C.H. 6.915-Gbit/s white-light phosphor laser diode-based DCO-OFDM visible light communication (VLC) system with functional transmission distance. Electron. Lett. 2020, 56, 945–947. [Google Scholar] [CrossRef]
- Lu, H.H.; Lin, Y.P.; Wu, P.Y.; Chen, C.Y.; Chen, M.C.; Jhang, T.W. A multiple-input-multiple-output visible light communication system based on VCSELs and spatial light modulators. Opt. Exp. 2014, 22, 3468–3474. [Google Scholar] [CrossRef]
- Chang, C.H.; Li, C.Y.; Lu, H.H.; Lin, C.Y.; Chen, J.H.; Wan, Z.W.; Cheng, C.J. A 100-Gb/s multiple-input multiple-output visible laser light communication system. J. Lightw. Technol. 2014, 32, 4723–4729. [Google Scholar] [CrossRef]
- Shen, C.; Guo, Y.; Oubei, H.M.; Ng, T.K.; Liu, G.; Park, K.H.; Ho, K.T.; Alouini, M.-S.; Ooi, B.S. 20-meter underwater wireless optical communication link with 1.5 Gbps data rate. Opt. Exp. 2016, 24, 25502–25509. [Google Scholar] [CrossRef]
- Lu, H.H.; Li, C.Y.; Lin, H.H.; Tsai, W.S.; Chu, C.A.; Chen, B.R.; Wu, C.J. An 8 m/9.6 Gbps underwater wireless optical communication system. IEEE Photon. J. 2016, 8, 7906107. [Google Scholar]
- Huang, X.H.; Lu, H.H.; Chang, P.S.; Liu, C.X.; Lin, Y.Y.; Ko, T.; Chen, Y.T. Bidirectional white-lighting WDM VLC–UWOC converged systems. J. Lightw. Technol. 2021, 39, 4351–4359. [Google Scholar] [CrossRef]
- Danakis, C.; Afgani, M.; Povey, G.; Underwood, I.; Haas, H. Using a CMOS camera sensor for visible light communication. In Proceedings of the IEEE Globecom Workshops 2012, Anaheim, CA, USA, 3–7 December 2012; pp. 1244–1248. [Google Scholar]
- Chow, C.W.; Liu, Y.; Yeh, C.H.; Chang, Y.H.; Lin, Y.S.; Hsu, K.L.; Liao, X.L.; Lin, K.H. Display light panel and rolling shutter image sensor based optical camera communication (OCC) using frame-averaging background removal and neural network. J. Lightw. Technol. 2021, 39, 4360–4366. [Google Scholar] [CrossRef]
- Chuang, Y.C.; Li, Z.Q.; Hsu, C.W.; Liu, Y.; Chow, C.W. Visible light communication and positioning using positioning cells and machine learning algorithms. Opt. Exp. 2019, 27, 16377–16383. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.W.; Su, S.J.; Chen, Y.W.; Zhou, Q.; Alfadhli, Y.; Chang, G.K. Real-time demonstration of 5G MMW beamforming and tracking using integrated visible light positioning system. Proc. OFC 2021, paper Tu5E.6. Available online: https://ieeexplore.ieee.org/document/9489670 (accessed on 24 October 2022).
- Minh, H.L.; O’Brien, D.; Faulkner, G.; Zeng, L.; Lee, K.; Jung, D.; Oh, Y.J.; Won, E.T. 100-Mb/s NRZ visible light communications using a post-equalized white LED. IEEE Photon. Technol. Lett. 2009, 21, 1063–1065. [Google Scholar] [CrossRef]
- Hsu, C.H.; Chow, C.W.; Lu, I.C.; Liu, Y.L.; Yeh, C.H.; Liu, Y. High speed imaging 3 × 3 MIMO phosphor white-light LED based visible light communication system. IEEE Photon. J. 2016, 8, 7907406. [Google Scholar] [CrossRef]
- Armstrong, J. OFDM for optical communications. J. Lightw. Technol. 2009, 27, 189–204. [Google Scholar] [CrossRef]
- Dissanayake, S.D.; Armstrong, J. Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD systems. J. Lightw. Technol. 2013, 31, 1063–1072. [Google Scholar] [CrossRef]
- Cossu, G.; Khalid, A.M.; Choudhury, P.; Corsini, R.; Ciaramella, E. 3.4 Gbit/s visible optical wireless transmission based on RGB LED. Opt. Exp. 2012, 20, B501–B506. [Google Scholar] [CrossRef]
- Lu, I.C.; Lai, C.H.; Yeh, C.H.; Chen, J. 6.36 Gbit/s RGB LED-Based WDM MIMO Visible Light Communication System Employing OFDM Modulation. Proc. OFC 2017, Paper W2A39. Available online: https://ieeexplore.ieee.org/document/7937382 (accessed on 24 October 2022).
- Chi, N.; Zhang, M.; Zhou, Y.; Zhao, J. 3.375-Gb/s RGB-LED based WDM visible light communication system employing PAM-8 modulation with phase shifted Manchester coding. Opt. Exp. 2016, 24, 21663–21673. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, F.; Shi, M.; Chi, N.; Liu, J.; Jiang, F. 10.72Gb/s Visible Light Communication System Based on Single Packaged RGBYC LED Utilizing QAM-DMT Modulation with Hardware Pre-Equalization. Proc. OFC 2018, paper M3K.3. Available online: https://ieeexplore.ieee.org/document/8385820 (accessed on 24 October 2022).
- Watson, S.; Tan, M.; Najda, S.P.; Perlin, P.; Leszczynski, M.; Targowski, G.; Grzanka, S.; Kelly, A.E. Visible light communications using a directly modulated 422 nm GaN laser diode. Opt. Lett. 2013, 38, 3792–3794. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.C.; Hsieh, D.H.; Tsai, C.T.; Chen, H.Y.; Kuo, H.C.; Lin, G.R. 450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM. Opt. Exp. 2015, 23, 13051–13059. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.C.; Chi, Y.C.; Wang, H.Y.; Tsai, C.T.; Huang, Y.F.; Lin, G.R. Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s. Sci. Rep. 2017, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Lu, I.C.; Yeh, C.H.; Hsu, D.Z.; Chow, C.W. Utilization of 1-GHz VCSEL for 11.1-Gbps OFDM VLC wireless communication. IEEE Photon. J. 2016, 8, 7904106. [Google Scholar] [CrossRef]
- Wei, L.Y.; Hsu, C.W.; Chow, C.W.; Yeh, C.H. 20.231 Gbit/s tricolor red/green/blue laser diode based bidirectional signal remodulation visible-light communication system. Photon. Res. 2018, 6, 422–426. [Google Scholar] [CrossRef]
- Gunawan, W.H.; Liu, Y.; Chow, C.W.; Chang, Y.H.; Peng, C.W.; Yeh, C.H. Two-level laser diode color-shift-keying orthogonal-frequency-division-multiplexing (LD-CSK-OFDM) for optical wireless communications (OWC). J. Lightw. Technol. 2021, 39, 3088–3094. [Google Scholar] [CrossRef]
- Chun, H.; Gomez, A.; Quintana, C.; Zhang, W.; Faulkner, G.; O’Brien, D. A wide-area coverage 35 Gb/s visible light communications link for indoor wireless applications. Sci. Rep. 2019, 9, 4952. [Google Scholar] [CrossRef]
- Lin, B.; Ye, W.; Tang, X.; Ghassemlooy, Z. Experimental demonstration of bidirectional NOMA-OFDMA visible light communications. Opt. Express 2017, 25, 4348–4355. [Google Scholar] [CrossRef]
- Shi, J.; He, J.; Hong, Y.; He, J.; Chen, L.K. Performance-enhanced NOMA-VLC using subcarrier pairwise coding. Opt. Commun. 2019, 450, 141–146. [Google Scholar] [CrossRef]
- Adnan, A.; Liu, Y.; Chow, C.W.; Yeh, C.H. Demonstration of non-Hermitian symmetry (NHS) IFFT/FFT size efficient OFDM non-orthogonal multiple access (NOMA) for visible light communication. IEEE Photon. J. 2020, 12, 7201405. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, D.; Jin, J.; Lu, H.; Wang, J. An experimental study of power division multiplexing in visible light communication. Opt. Commun. 2020, 455, 124296. [Google Scholar] [CrossRef]
- Lee, K.; Park, H.; Barry, J.R. Indoor channel characteristics for visible light communications. IEEE Comm. Lett. 2011, 15, 217–219. [Google Scholar] [CrossRef]
- Lee, K.; Park, H. Channel model and modulation schemes for visible light communications. In Proceedings of the 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS), Seoul, Korea, 7–10 August 2011; pp. 1–4. [Google Scholar]
- Saito, Y.; Kishiyama, Y.; Benjebbour, A.; Nakamura, T.; Li, A.; Higuchi, K. Non-orthogonal multiple access (NOMA) for cellular future radio access. In Proceedings of the 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), Dresden, Germany, 2–5 June 2013; pp. 1–5. [Google Scholar]
- Gunawan, W.H.; Chang, Y.; Chow, C.W.; Liu, Y.; Yeh, C.H. High Speed RGB Visible Light Communication (VLC) Using Digital Power-domain Multiplexing (DPDM) of Orthogonal Frequency Division Multiplexed (OFDM) Signals. Proc. OFC 2022, paper Th2A.24. Available online: https://ieeexplore.ieee.org/document/9748209 (accessed on 24 October 2022).
- Gunawan, W.H.; Liu, Y.; Chow, C.W.; Chang, Y.H.; Yeh, C.H. High speed visible light communication using digital power domain multiplexing of orthogonal frequency division multiplexed (OFDM) signals. Photonics 2021, 8, 500. [Google Scholar] [CrossRef]
- Bruno, T.J.; Svoronos, P.D.N. CRC Handbook of Fundamental Spectroscopic Correlation Charts; CRC Press: Boca Raton, FL, USA, 2005; ISBN 9781420037685. [Google Scholar]
- Singh, R.; Pergoloni, S.; O’Farrell, T.; Scarano, G.; David, J.; Biagi, M. White light constrained multi-primary modulation for visible light communication. In Proceedings of the 2017 IEEE Globecom Workshops (GC Wkshps), Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar]
- Wei, L.Y.; Chow, C.W.; Chen, G.H.; Liu, Y.; Yeh, C.H.; Hsu, C.W. Tricolor visible-light laser diodes based visible light communication operated at 40.665 Gbit/s and 2 m free-space transmission. Opt. Express 2019, 27, 25072–25077. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, L.; Huang, X.; Shi, J.; Chi, N. 8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer. IEEE Photonics J. 2015, 7, 7904507. [Google Scholar]
- Chow, C.W.; Chang, Y.H.; Wei, L.Y.; Yeh, C.H.; Liu, Y. 26.228-Gbit/s RGBV visible light communication (VLC) with 2-m free space transmission. In Proceedings of the 2020 Opto-Electronics and Communications Conference (OECC), Taipei, Taiwan, 4–8 October 2020. [Google Scholar] [CrossRef]
FSM Freq. (Hz) | Rx Amp. (mV) | Tracked by Piezo | Time for Tracking and Feedback (s) |
---|---|---|---|
1 | 32 | No | - |
2 | 44 | No | - |
3 | 207 | Yes | 8 |
4 | 180 | Yes | 7.8 |
5 | 177 | Yes | 7.9 |
6–10 | 180 | No need | No need |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunawan, W.H.; Chow, C.-W.; Liu, Y.; Chang, Y.-H.; Yeh, C.-H. Optical Beam Steerable Visible Light Communication (VLC) System Supporting Multiple Users Using RGB and Orthogonal Frequency Division Multiplexed (OFDM) Non-Orthogonal Multiple Access (NOMA). Sensors 2022, 22, 8707. https://doi.org/10.3390/s22228707
Gunawan WH, Chow C-W, Liu Y, Chang Y-H, Yeh C-H. Optical Beam Steerable Visible Light Communication (VLC) System Supporting Multiple Users Using RGB and Orthogonal Frequency Division Multiplexed (OFDM) Non-Orthogonal Multiple Access (NOMA). Sensors. 2022; 22(22):8707. https://doi.org/10.3390/s22228707
Chicago/Turabian StyleGunawan, Wahyu Hendra, Chi-Wai Chow, Yang Liu, Yun-Han Chang, and Chien-Hung Yeh. 2022. "Optical Beam Steerable Visible Light Communication (VLC) System Supporting Multiple Users Using RGB and Orthogonal Frequency Division Multiplexed (OFDM) Non-Orthogonal Multiple Access (NOMA)" Sensors 22, no. 22: 8707. https://doi.org/10.3390/s22228707
APA StyleGunawan, W. H., Chow, C.-W., Liu, Y., Chang, Y.-H., & Yeh, C.-H. (2022). Optical Beam Steerable Visible Light Communication (VLC) System Supporting Multiple Users Using RGB and Orthogonal Frequency Division Multiplexed (OFDM) Non-Orthogonal Multiple Access (NOMA). Sensors, 22(22), 8707. https://doi.org/10.3390/s22228707