Enhancement of Ultrasonic Transducer Bandwidth by Acoustic Impedance Gradient Matching Layer
Abstract
:1. Introduction
2. Exploration of the Acoustic Impedance Distribution Curve of Optimal Matching Layer
3. Fabrications and Test of Transducers
3.1. Preparation of Acoustic Impedance Gradient Matching Layer
3.2. Fabrication of Transducers
3.3. Temporal Signal and Frequency Spectrum
3.4. Results Discussion
3.5. Wire Phantom Imaging
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Errico, C.; Pierre, J.; Pezet, S.; Desailly, Y.; Lenkei, Z.; Couture, O.; Tanter, M. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature 2015, 527, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Abou-Elkacem, L.; Bachawal, S.V.; Willmann, J.K. Ultrasound molecular imaging: Moving toward clinical translation. Eur. J. Radiol. 2015, 84, 1685–1693. [Google Scholar] [CrossRef] [Green Version]
- Schoenhagen, P.; Nissen, S.E. Intravascular ultrasonography: Using imaging end points in coronary atherosclerosis trials. Clevel. Clin. J. Med. 2005, 72, 487–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macé, E.; Montaldo, G.; Cohen, I.; Baulac, M.; Fink, M.; Tanter, M. Functional ultrasound imaging of the brain. Nat. Methods 2011, 8, 662–664. [Google Scholar] [CrossRef] [PubMed]
- Viessmann, O.M.; Eckersley, R.J.; Christensen-Jeffries, K.; Tang, M.X.; Dunsby, C. Acoustic super-resolution with ultrasound and microbubbles. Phys. Med. Biol. 2013, 58, 6447–6458. [Google Scholar] [CrossRef] [PubMed]
- Osmanski, B.-F.; Pezet, S.; Ricobaraza, A.; Lenkei, Z.; Tanter, M. Functional ultrasound imaging of intrinsic connectivity in the living rat brain with high spatiotemporal resolution. Nat. Commun. 2014, 5, 5023. [Google Scholar] [CrossRef] [Green Version]
- Shung, K.K.; Zipparo, M. Ultrasonic transducers and arrays. IEEE Eng. Med. Biol. Mag. 1996, 15, 20. [Google Scholar] [CrossRef] [Green Version]
- Hoskins, P.R.; Thrush, A.; Martin, K. Diagnostic Ultrasound; Greenwich Medical Media Limited: London, UK, 2003. [Google Scholar]
- Whittingham, T.A. Boardband transducers. Eur. Radiol. 1999, 9 (Suppl. S3), 298. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, S.; Liu, D.; Zhang, Q.; Wang, W.; Ren, B.; Zhao, X.; Luo, H. Fabrication of angle beam two-element ultrasonic transducers with PMN–PT single crystal and PMN–PT/epoxy 1–3 composite for NDE applications. Sensors Actuators A Phys. 2011, 168, 223–228. [Google Scholar] [CrossRef]
- Xiang, S.H.; Zhang, Y.T. Matching layer optimization between ultrasound transducer and human tissues. Proc. IEEE Ultrason. Symp. Eng. Med. Biol. Soc. 1995, 1, 623. [Google Scholar]
- Kossoff, G. The Effects of Backing and Matching on the Performance of Piezoelectric Ceramic Transducers. IEEE Trans. Sonics Ultrason. 1966, 13, 20–30. [Google Scholar] [CrossRef]
- Goll, J.; Auld, B. Multilayer Impedance Matching Schemes for Broadbanding of Water Loaded Piezoelectric Transducers and High Q Electric Resonators. IEEE Trans. Sonics Ultrason. 1975, 22, 52–53. [Google Scholar] [CrossRef]
- Manh, T.; Nguyen, A.-T.T.; Johansen, T.F.; Hoff, L. Microfabrication of stacks of acoustic matching layers for 15MHz ultrasonic transducers. Ultrasonics 2014, 54, 614–620. [Google Scholar] [CrossRef]
- Lau, S.T.; Li, H.; Wong, K.S.; Zhou, Q.F.; Zhou, D.; Li, Y.C.; Luo, H.S.; Shung, K.K.; Dai, J.Y. Multiple matching scheme for broadband 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 single crystal phased-array transducer. J. Appl. Phys. 2009, 105, 094908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez-Arenas, T.E.G. Acoustic Impedance Matching of Piezoelectric Transducers to the Air. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2004, 51, 624–633. [Google Scholar] [CrossRef]
- Haller, M.I.; Khuri-Yakub, B.T. Tapered acoustic matching layers. Proc. IEEE Ultrason. Symp. 1993, 505–508. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Panda, R. Review: Commercialization of piezoelectric single crystals for medical imaging applications. Proc. IEEE Ultrason. Symp. 2005, 1, 235. [Google Scholar]
- Zhou, Q.; Lam, K.H.; Zheng, H.; Qiu, W.; Shung, K.K. Piezoelectric single crystal ultrasonic transducers for biomedical applications. Prog. Mater. Sci. 2014, 66, 87–111. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.M.; Proulx, T.L. Single crystal vs PZT ceramics for medical ultrasound applications. Proc. IEEE Ultrason. Symp. 2005, 1, 227. [Google Scholar]
- Gururaja, T.; Panda, R.; Chen, J.; Beck, H. Single crystal transducers for medical imaging applications. Proc. IEEE Ultrason. Symp. 1999, 2, 969–972. [Google Scholar] [CrossRef]
- Sun, P.; Wang, G.; Wu, D.; Zhu, B.; Hu, C.; Liu, C.; Djuth, F.T.; Zhou, Q.; Shung, K.K. High frequency PMN–PT 1-3 composite transducer for ultrasonic imaging application. Ferroelectrics 2010, 408, 120–1288. [Google Scholar] [CrossRef]
- Zhou, D.; Cheung, K.F.; Chen, Y.; Lau, S.T.; Zhou, Q.; Shung, K.K.; Luo, H.S.; Dai, J.; Chan, H.L.W. Fabrication and performance of endoscopic ultrasound radial arrays based on PMN-PT single crystal/epoxy 1-3 composite. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 477–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Lam, K.; Zhou, D.; Cheng, W.; Dai, J.; Luo, H.; Chan, H. High frequency PMN–PT single crystal focusing transducer fabricated by a mechanical dimpling technique. Ultrasonics 2013, 53, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Yue, Q.; Liu, D.; Deng, J.; Zhao, X.; Lin, D.; Di, W.; Li, X.; Wang, W.; Wang, X.A.; Luo, H. Design and fabrication of relaxor-ferroelectric single crystal PIN–PMN–PT/epoxy 2–2 composite based array transducer. Sens. Actuators A 2015, 234, 34–42. [Google Scholar] [CrossRef]
- Zhu, J. Optimization of Matching Layer Design for Medical Ultrasonic Transducer; The Pennsylvania State University: State College, PA, USA, 2008. [Google Scholar]
- Feng, G.-H.; Liu, W.-F. A Spherically-Shaped PZT Thin Film Ultrasonic Transducer with an Acoustic Impedance Gradient Matching Layer Based on a Micromachined Periodically Structured Flexible Substrate. Sensors 2013, 13, 13543–13559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Yang, D.-Q.; Liu, S.-L.; Yu, S.-Y.; Lu, M.-H.; Zhu, J.; Zhang, S.-T.; Zhu, M.-W.; Guo, X.-S.; Wu, H.-D.; et al. Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers. Sci. Rep. 2017, 7, 42863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huo, X.; Zhang, S.; Liu, G.; Zhang, R.; Luo, J.; Sahul, R.; Cao, W.; Shrout, T.R. Complete set of elastic, dielectric, and piezoelectric constants of [011](C) poled rhombohedral Pb(In0.5Nb0.5)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3: Mn single crystals. J. Appl. Phys. 2013, 113, 074106. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhang, R.; Enwei, S.; Wenwu, C. Temperature dependence of electric-field-induced domain switching in 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystal. J. Allo. Comp. 2012, 52, 7101–7105. [Google Scholar]
- Wang, Z.; Zhang, R.; Sun, E.; Cao, W. Dielectric and elastic properties of 0.70Pb(Mg1/3Nb2/3)O3–0.30PbTiO3 single crystal and their electric-field dependence. J. Mater. Sci. 2011, 47, 429–432. [Google Scholar] [CrossRef]
- Li, X.-M.; Zhang, R.; Huang, N.-X.; Lü, T.-Q.; Cao, W.-W. Surface Acoustic Wave Propagation in Relaxor-Based Ferroelectric Single Crystals 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO(3) Poled along [011](c). Chin. Phys. Lett. 2012, 29, 024302. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Li, B.; Yang, D. Theoretical and numerical simulation of broadband transducer with gradient matching layers. Piezoelectrics Acoustoopt. 2018, 40, 240–243. [Google Scholar]
- Zhu, K. The Study on the Acoustic Gradient Impedance Matching Layer of Ultransonic Transducer; Harbin Institute of Technology: Harbin, China, 2015. [Google Scholar]
- Yang, D.-S.; Sun, Y.; Hu, B.; Han, C.; Jin, S. Acoustic characteristics of the media with gradient change of impedance. J. Harbin Eng. Univ. 2014, 35, 1458–1466. [Google Scholar]
- Ritter, T.; Geng, X.; Shung, K.K.; Lopath, P.; Park, S.-E.; Shrout, T. Single crystal PZN/PT-polymer composites for ultrasound transducer applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2000, 47, 792–800. [Google Scholar] [CrossRef]
- Kim, K.B.; Hsu, D.K.; Ahn, B.; Kim, Y.G.; Barnard, D.J. “Fabrication and comparison of PMN-PT single crystal, PZT and PZT-based 1–3 composite ultrasonic transducers for NDE applications”. Ultrasonics 2010, 50, 790–797. [Google Scholar] [CrossRef]
- Zhen, Y.; Li, J.-F. Preparation and electrical properties of fine-scale 1–3 lead zirconic titanate∕epoxy composite thick films for high-frequency ultrasonic transducers. J. Appl. Phys. 2008, 103, 084119. [Google Scholar] [CrossRef]
- Bian, J.; Wang, Y.; Liu, Z.; Shen, M.; Zhao, H.; Sun, Y.; Zhu, J. Ultra-wideband underwater acoustic transducer with a gradient impedance matching layer. Appl. Acoust. 2021, 175, 107789. [Google Scholar] [CrossRef]
- Zhu, K.; Ma, J.; Liu, Y.; Shen, B.; Huo, D.; Yang, Y.; Qi, X.; Sun, E.; Zhang, R. Increasing Performances of 1–3 Piezocomposite Ultrasonic Transducer by Alternating Current Poling Method. Micromachines 2022, 13, 1715. [Google Scholar] [CrossRef]
- Mulholland, A.J.; Ramadas, N.; O’Leary, R.L.; Parr, A.C.; Hayward, G.; Troge, A.; Pethrick, R.A. Enhancing the performance of piezoelectric ultrasound transducers by the use of multiple matching layers. IMA J. Appl. Math. 2008, 73, 936–949. [Google Scholar] [CrossRef]
- Wang, W.; Or, S.W.; Yue, Q.; Zhang, Y.; Jiao, J.; Ren, B.; Lin, D.; Leung, C.M.; Zhao, X.; Luo, H. Cylindrically shaped ultrasonic linear array fabricated using PIMNT/epoxy 1-3 piezoelectric composite. Sensors Actuators A Phys. 2013, 192, 69–75. [Google Scholar] [CrossRef]
Parameter | 1-3 Composite PZT-5H | 1-3 Composite PMN-PT |
---|---|---|
Area | 78.54 mm2 (radius = 5 mm) | 78.54 mm2 (radius = 5 mm) |
Thickness | 0.56 mm | 0.56 mm |
Density | 4052 kg/m3 | 4086 kg/m3 |
Longitudinal wave velocity | 3912 m/s | 3893 m/s |
d33 | ~610 pC/N | ~1230 pC/N |
kt | 0.58 | 0.81 |
1211 | 822 | |
0.037 | 0.030 | |
0.018 | 0.015 |
Material | Thickness (mm) | Acoustic Impedance (MRayls) | Longitudinal Wave Velocity (m/s) | Attenuation Coefficient at 3 MHz (dB/cm) |
---|---|---|---|---|
1-3 composite PZT-5H | 0.56 | 15.8 | 3912 | - |
1-3 composite PMN-PT | 0.56 | 15.9 | 3893 | - |
Matching layer 1 | 0.02 | 8.2 | 1700 | 2.0 |
Matching layer 2 | 0.02 | 7.2 | 1740 | 2.2 |
Matching layer 3 | 0.02 | 6.3 | 1810 | 2.4 |
Matching layer 4 | 0.02 | 5.6 | 1900 | 2.7 |
Matching layer 5 | 0.02 | 4.9 | 2100 | 3.0 |
Matching layer 6 | 0.02 | 4.4 | 2300 | 2.5 |
Matching layer 7 | 0.02 | 4.0 | 2500 | 2.2 |
Matching layer 8 | 0.02 | 3.6 | 2550 | 1.8 |
Matching layer 9 | 0.02 | 3.3 | 2600 | 1.4 |
Matching layer 10 | 0.02 | 3.2 | 2650 | 1.0 |
Single matching layer | 0.20 | 5.5 | 2800 | 1.0 |
Backing | 30 | 10.5 | 1500 | ~10 |
Performance | Single-Matching-Layer Transducer (PZT-5H) | Gradient-Matching-Layer Transducer (PZT-5H) | Gradient-Matching-Layer Transducer (PMN-PT) |
---|---|---|---|
Center frequency | 3.02 MHz | 2.98 MHz | 3.06 MHz |
Insertion loss | −23.1 dB | −21.3 dB | −20.3 dB |
−6 dB bandwidth | 86.6% | 136.8% | 174.7% |
Piezoelectric Material | Number of Matching Layers | −6 dB Bandwidth | Reference |
---|---|---|---|
1-3 PZT-5H | 1 | 86.6% | This work |
1-3 PZT-5H | 2 | 89.8% | [40] |
1-3 PZT-5H | 3 | 90.0% | [14] |
1-3 PZT-5H | 4 | 93.0% | [41] |
1-3 PZT-5H | Gradient | 107.0% | [28] |
1-3 PZT-5H | Gradient | 126.3% | [39] |
1-3 PZT-5H | Gradient | 136.8% | This work |
1-3 PIN-PMN-PT | 1 | 94.6% | [42] |
1-3 PMN-PT | 2 | 110.0% | [22] |
1-3 PMN-PT | Gradient | 174.7% | This work |
Material | Axial Resolution | Lateral Resolution |
---|---|---|
1-3 PZT-5H with single matching layer | 0.82 mm | 2.3 mm |
1-3 PZT-5H with gradient matching layer | 0.31 mm | 2.5 mm |
1-3 PMN-PT with gradient matching layer | 0.30 mm | 2.4 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, K.; Ma, J.; Qi, X.; Shen, B.; Liu, Y.; Sun, E.; Zhang, R. Enhancement of Ultrasonic Transducer Bandwidth by Acoustic Impedance Gradient Matching Layer. Sensors 2022, 22, 8025. https://doi.org/10.3390/s22208025
Zhu K, Ma J, Qi X, Shen B, Liu Y, Sun E, Zhang R. Enhancement of Ultrasonic Transducer Bandwidth by Acoustic Impedance Gradient Matching Layer. Sensors. 2022; 22(20):8025. https://doi.org/10.3390/s22208025
Chicago/Turabian StyleZhu, Ke, Jinpeng Ma, Xudong Qi, Bingzhong Shen, Yang Liu, Enwei Sun, and Rui Zhang. 2022. "Enhancement of Ultrasonic Transducer Bandwidth by Acoustic Impedance Gradient Matching Layer" Sensors 22, no. 20: 8025. https://doi.org/10.3390/s22208025
APA StyleZhu, K., Ma, J., Qi, X., Shen, B., Liu, Y., Sun, E., & Zhang, R. (2022). Enhancement of Ultrasonic Transducer Bandwidth by Acoustic Impedance Gradient Matching Layer. Sensors, 22(20), 8025. https://doi.org/10.3390/s22208025