Application of Prussian Blue in Electrochemical and Optical Sensing of Free Chlorine
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Equipment for Electrochemical and Optical Investigations
2.3. Preparation of the Glass|FTO|PB Sensor
2.4. Preparation of the Glass|FTO|PW and Glass|FTO|PW-PB Electrodes for Optical Investigation
2.5. Electrochemical Investigations of the Glass|FTO|PB Sensor and Optical Investigation of the Glass|FTO|PW-PB Electrode
3. Results and Discussion
3.1. Scanning Electron Microscopy and Optical Absorption Spectroscopy-Based Investigations of the Glass|FTO|BM Sensor
3.2. Cyclic Voltammetry-Based Investigation of the Glass|FTO|PB Sensor in FCL-Containing Solution
3.3. Chronoamperometric Investigation of the Glass|FTO|PB Sensor in FCL-Containing Solution
3.4. Response of the Glass|FTO|PB Sensor to Interfering Ions
3.5. Optical Investigation of the Glass|FTO|PW-PB Electrode in FCL-Containing Solution
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Bridle, H.; Miller, B.; Desmulliez, M.P.Y. Application of microfluidics in waterborne pathogen monitoring: A review. Water Res. 2014, 55, 256–271. [Google Scholar] [CrossRef]
- Fukuzaki, S. Mechanisms of Actions of Sodium Hypochlorite in Cleaning and Disinfection Processes. Biocontrol Sci. 2006, 11, 147–157. [Google Scholar] [CrossRef]
- Qin, Y.; Kwon, H.-J.; Howlader, M.M.R.; Deen, M.J. Microfabricated electrochemical pH and free chlorine sensors for water quality monitoring: Recent advances and research challenges. RSC Adv. 2015, 5, 69086–69109. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality, 3rd ed.; WHO Press: Geneva, Switzerland, 2008.
- World Health Organization. Guidelines for Safe Recreational Water Environments; WHO Press: Geneva, Switzerland, 2006.
- Nollet, L.M.L.; De Gelder, L.S.P. Handbook of Water Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Ma, Y.; Zhu, Y.; Liu, B.; Quan, G.; Cui, L. Colorimetric Determination of Hypochlorite Based on the Oxidative Leaching of Gold Nanorods. Materials 2018, 11, 1629. [Google Scholar] [CrossRef] [PubMed]
- Wonjung, L.; Youn, H.; Bae, J.; Kim, D.-H. Solid-phase colorimetric sensor for hypochlorite. Analyst 2021, 146, 2301–2306. [Google Scholar] [CrossRef]
- Guo, Y.; Ma, Q.; Cao, F.P.; Zhao, Q.; Ji, X. Colorimetric detection of hypochlorite in tap water based on the oxidation of 3,3′,5,5′-tetramethyl benzidine. Anal. Methods 2015, 7, 4055–4058. [Google Scholar] [CrossRef]
- Lou, X.; Zhang, Y.; Qin, J.; Li, Z. Colorimetric hypochlorite detection using an azobenzene acid in pure aqueous solutions and real application in tap water. Sens. Actuators B Chem. 2012, 161, 229–234. [Google Scholar] [CrossRef]
- Watanabe, T.; Idehara, T.; Yoshimura, Y.; Nakazawa, H. Simultaneous determination of chlorine dioxide and hypochlorite in water by high-performance liquid chromatography. J. Chromatogr. A 1998, 796, 397–400. [Google Scholar] [CrossRef]
- Gallina, A.; Pastore, P.; Magno, F. The use of nitrite ion in the chromatographic determination of large amounts of hypochlorite ion and of traces of chlorite and chlorate ions. Analyst 1999, 124, 1439–1442. [Google Scholar] [CrossRef]
- Chen, L.; Park, S.J.; Wu, D.; Kim, H.M.; Yoon, J. A two-photon ESIPT based fluorescence probe for specific detection of hypochlorite. Dyes Pigment. 2018, 158, 526–532. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, S. Determination of Hypochlorous Acid in Tap Water Using Highly Fluorescent Graphene Oxide. APCBEE Procedia 2014, 10, 7–11. [Google Scholar] [CrossRef][Green Version]
- Chen, H.; Sun, T.; Qiao, X.G.; Tang, Q.O.; Zhao, S.C.; Zhou, Z. Red-emitting fluorescent probe for detecting hypochlorite acid in vitro and in vivo. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 5, 196–202. [Google Scholar] [CrossRef] [PubMed]
- March, J.G.; Simonet, B.M. A green method for the determination of hypochlorite in bleaching products based on its native absorbance. Talanta 2007, 73, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Del Campo, F.J.; Ordeig, O.; Munoz, F.J. Improved free chlorine amperometric sensor chip for drinking water applications. Anal. Chim. Acta 2005, 554, 98–104. [Google Scholar] [CrossRef]
- Kodera, F.; Umeda, M.; Yamada, A. Determination of free chlorine based on anodic voltammetry using platinum, gold, and glassy carbon electrodes. Anal. Chim. Acta 2005, 537, 293–298. [Google Scholar] [CrossRef]
- Ordeig, O.; Mas, R.; Gonzalo, J.; Del Campo, F.J.; Munoz, F.J.; De Haro, C. Continuous Detection of Hypochlorous Acid/Hypochlorite for Water Quality Monitoring and Control. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2005, 17, 1641–1648. [Google Scholar] [CrossRef]
- Li, G.; Qi, X.; Wu, J.; Xu, L.; Wan, X.; Liu, Y.; Chen, Y.; Li, Q. Ultrasensitive, label-free voltammetric determination of norfloxacin based on molecularly imprinted polymers and Au nanoparticle-functionalized black phosphorus nanosheet nanocomposite. J. Hazard. Mater. 2022, 436, 129107. [Google Scholar] [CrossRef]
- Li, G.; Wu, J.; Qi, X.; Wan, X.; Liu, Y.; Chen, Y.; Xu, L. Molecularly imprinted polypyrrole film-coated poly(3,4-ethylenedioxythiophene):polystyrene sulfonate-functionalized black phosphorene for the selective and robust detection of norfloxacin. Mater. Today Chem. 2022, 26, 101043. [Google Scholar] [CrossRef]
- Rudnicki, K.; Sipa, K.; Brycht, M.; Borgul, P.; Skrzypek, S.; Poltorak, L. Electrochemical sensing of fluoroquinolone antibiotics. TrAC Trends Anal. Chem. 2020, 128, 115907. [Google Scholar] [CrossRef]
- Simões, F.R.; Xavier, M.G. Nanoscience and Its Applications; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Birss, V.I.; Chang, M.; Segal, J. Platinum oxide film formation—Reduction: An in-situ mass measurement study. J. Electroanal. Chem. 1993, 355, 181–191. [Google Scholar] [CrossRef]
- Xia, S.J.; Birss, V.I. Hydrous oxide film growth on Pt. I. Type I B[beta]-oxide formation in 0.1 M H2S04. Electrochim. Acta 1998, 44, 467–482. [Google Scholar] [CrossRef]
- Thiagarajan, S.; Wu, Z.-Y.; Chen, S.-M. Amperometric determination of sodium hypochlorite at poly MnTAPP-nano Au film modified electrode. J. Electroanal. Chem. 2011, 661, 322–328. [Google Scholar] [CrossRef]
- Guo, D.; Wu, S.; Xu, X.; Niu, X.; Li, X.; Li, Z.; Pan, J. A novel label-free hypochlorite amperometric sensor based on target-induced oxidation of benzeneboronic acid pinacol ester. Chem. Eng. J. 2019, 373, 1–7. [Google Scholar] [CrossRef]
- Muñoz, J.; Céspedes, F.; Baeza, M. Modified multiwalled carbon nanotube/epoxy amperometric nanocomposite sensors with CuO nanoparticles for electrocatalytic detection of free chlorine. Microchem. J. 2015, 122, 189–196. [Google Scholar] [CrossRef]
- Karyakin, A.A. Advances of Prussian blue and its analogues in (bio)sensors. Curr. Opin. Electrochem. 2017, 5, 92–98. [Google Scholar] [CrossRef]
- Sitnikova, N.A.; Borisova, A.V.; Komkova, M.A.; Karyakin, A.A. Superstable Advanced Hydrogen Peroxide Transducer Based on Transition Metal Hexacyanoferrates. Anal. Chem. 2011, 83, 2359–2363. [Google Scholar] [CrossRef]
- Li, L.; Zhang, P.; Li, Z.; Li, D.; Han, B.; Tu, L.; Li, B.; Wang, Y.; Ren, L.; Yang, P. CuS/Prussian blue core–shell nanohybrid as an electrochemical sensor for ascorbic acid detection. Nanotechnology 2019, 30, 325501. [Google Scholar] [CrossRef]
- Lee, S.H.; Chung, J.-H.; Park, H.-K.; Lee, G.-J. A Simple and Facile Glucose Biosensor Based on Prussian Blue Modified Graphite String. J. Sens. 2016, 2016, 1859292. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, J.; Tricard, S.; Yu, L.; Fang, J. A sensitive and selective electrochemical sensor based on N, P-Doped molybdenum Carbide@Carbon/Prussian blue/graphite felt composite electrode for the detection of dopamine. Anal. Chim. Acta 2020, 1094, 80–89. [Google Scholar] [CrossRef]
- Kong, B.; Selomulya, C.; Zhenga, G.; Zhao, D. New faces of porous Prussian blue: Interfacial assembly of integrated hetero-structures for sensing applications. Chem. Soc. Rev. 2015, 44, 7997–8018. [Google Scholar] [CrossRef]
- Itaya, K.; Akahoshi, H. Electrochemistry of Prussian Blue Modified Electrodes: An Electrochemical Preparation Method. J. Electrochem. Soc. 1982, 129, 1498–1500. [Google Scholar] [CrossRef]
- Ricci, F.; Palleschi, G. Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosens. Bioelectron. 2005, 21, 389–407. [Google Scholar] [CrossRef] [PubMed]
- Virbickas, P.; Valiūnienė, A.; Kavaliauskaitė, G.; Ramanavičius, A. Prussian White-Based Optical Glucose Biosensor. J. Electrochem. Soc. 2019, 166, B927–B932. [Google Scholar] [CrossRef]
- Aller-Pellitero, M.; del Campo, F.J. Electrochromic sensors: Innovative devices enabled by spectroelectrochemical methods. Curr. Opin. Electrochem. 2019, 15, 66–72. [Google Scholar] [CrossRef]
- Virbickas, P.; Valiūnienė, A.; Ramanavičius, A. Towards electrochromic ammonium ion sensors. Electroch. Commun. 2018, 94, 41–44. [Google Scholar] [CrossRef]
- Valiūnienė, A.; Virbickas, P.; Medvikytė, G.; Ramanavicius, A. Urea Biosensor Based on Electrochromic Properties of Prussian Blue. Electroanalysis 2020, 32, 503–509. [Google Scholar] [CrossRef]
- Koncki, R.; Lenarczuk, T.; Radomska, A.; Glab, S. Optical biosensors based on Prussian Blue films. Analyst 2001, 126, 1080–1085. [Google Scholar] [CrossRef]
- Zloczewska, A.; Celebanska, A.; Szota, K.; Tomaszewska, D.; Opallo, M.; Jönsson-Niedziolk, M. Self-powered biosensor for ascorbic acid with a Prussian blue electrochromic display. Biosens. Bioelectron. 2014, 54, 455–461. [Google Scholar] [CrossRef]
- Aller-Pellitero, M.; Fremeau, J.; Villa, R.; Guirado, G.; Lakard, B.; Hihn, J.-Y.; del Campo, F.J. Electrochromic biosensors based on screen-printed Prussian Blue electrodes. Sens. Actuators B. Chem. 2019, 290, 591–597. [Google Scholar] [CrossRef]
- Junaid, H.M.; Solangi, A.R.; Batool, M. Carbon dots as naked eye sensors. Analyst 2021, 146, 2463–2474. [Google Scholar] [CrossRef]
- Shim, J.H.; Lee, J.S.; Cha, G.S.; Nam, H.H. Electroanalytical applications based on carbon nanotube/Prussian blue screen-printable composite. Bull. Korean Chem. Soc. 2010, 31, 1583–1588. [Google Scholar] [CrossRef]
- Salazar, P.; Martín, M.; García-García, F.J.; González-Mora, J.L.; González-Elipe, A.R. A novel and improved surfactant-modified Prussian Blue electrode for amperometric detection of free chlorine in water. Sens. Actuators B Chem. 2015, 213, 116–123. [Google Scholar] [CrossRef]
- Salazar, P.; Martín, M.; González-Mora, J.L.; González-Elipe, A.R. Application of Prussian Blue electrodes for amperometric detection of free chlorine in water samples using Flow Injection Analysis. Talanta 2016, 146, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Stanford, B.D.; Pisarenko, A.N.; Snyder, S.A.; Gordon, G. Perchlorate, bromate, and chlorate in hypochlorite solutions: Guidelines for utilities. J. Am. Water Works Assoc. 2011, 103, 71–83. [Google Scholar] [CrossRef]
- ISO 7393-3:1990(en); Water Quality—Determination of Free Chlorine and Total Chlorine—Part 3: Iodometric Titration Method for the Determination of Total Chlorine. The International Organization for Standardization: Geneva, Switzerland, 1990. Available online: https://www.iso.org/obp/ui/#iso:std:iso:7393:-3:en (accessed on 26 March 2022).
- Itaya, K.; Uchida, I.; Neff, V.D. Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Acc. Chem. Res. 1986, 19, 162–168. [Google Scholar] [CrossRef]
- Rutala, W.A.; Cole, E.C.; Thomann, C.A.; Weber, D.J. Stability and bactericidal activity of chlorine solutions. Infect. Control Hosp. Epidemiol. 1998, 19, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, R.M.; Moule, A.J.; Podlich, H.M. The shelf-life of sodium hypochlorite irrigating solutions. Aust. Dent. J. 2001, 46, 269–276. [Google Scholar] [CrossRef]
- Agrisuelas, J.; García-Jareño, J.J.; Gimenez-Romero, D.; Vicente, F. Insights on the Mechanism of Insoluble-to-Soluble Prussian Blue Transformation. J. Electrochem. Soc. 2009, 156, 149–156. [Google Scholar] [CrossRef]
- Valiūnienė, A.; Kavaliauskaitė, G.; Virbickas, P.; Ramanavičius, A. Prussian blue based impedimetric urea biosensor. J. Electroanal. Chem. 2021, 895, 115473. [Google Scholar] [CrossRef]
- Ozeki, T.; Watanbe, I.; Ikeda, S. Study of the Prussian blue/Prussian white redox reaction by cyclic voltammothermometry. J. Electroanal. Chem. Interf. Electrochem. 1987, 236, 209–218. [Google Scholar] [CrossRef]
- Koncki, R. Chemical Sensors and Biosensors Based on Prussian Blues. Crit. Rev. Anal. Chem. 2022, 32, 79–96. [Google Scholar] [CrossRef]
- Koncki, R.; Wolfbeis, O.S. Composite Films of Prussian Blue and N-Substituted Polypyrroles: Fabrication and Application to Optical Determination of pH. Anal. Chem. 1998, 70, 2544–2550. [Google Scholar] [CrossRef]
- Zhu, N.; Han, S.; Gan, S.; Ulstrup, J.; Chi, Q. Graphene Paper Doped with Chemically Compatible Prussian Blue Nanoparticles as Nanohybrid Electrocatalyst. Adv. Funct. Mater. 2013, 23, 5297–5306. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, K.; Yu, P.; Xiang, L.; Li, X.; Mao, L. A Facile Electrochemical Method for Simultaneous and On-Line Measurements of Glucose and Lactate in Brain Microdialysate with Prussian Blue as the Electrocatalyst for Reduction of Hydrogen Peroxide. Anal. Chem. 2007, 79, 9577–9583. [Google Scholar] [CrossRef]
- Jerez-Masaquiza, M.D.; Fernández, L.; González, G.; Montero-Jiménez, M.; Espinoza-Montero, P.J. Electrochemical Sensor Based on Prussian Blue Electrochemically Deposited at ZrO2 Doped Carbon Nanotubes Glassy Carbon Modified Electrode. Nanomaterials 2020, 10, 1328. [Google Scholar] [CrossRef]
- Salazar, P.; Martín, M.; O’Neill, R.D.; Roche, R.; González-Mora, J.L. Surfactant-promoted Prussian Blue-modified carbon electrodes: Enhancement of electro-deposition step, stabilization, electrochemical properties and application to lactate microbiosensors for the neurosciences. Colloids Surf. B Biointerfaces 2012, 92, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-T.; Tang, Y.-H.; Zhou, K.-L.; Wang, H.; Yan, H. Improving Electrochromic Cycle Life of Prussian Blue by Acid Addition to the Electrolyte. Materials 2019, 12, 28. [Google Scholar] [CrossRef]
- García-Jareño, J.J.; Sanmatías, A.; Navarro-Laboulais, J.; Vicente, F. The role of potassium and hydrogen ions in the Prussian Blue ⇆ Everitt‘s Salt process. Electrochim. Acta 1998, 44, 395–405. [Google Scholar] [CrossRef]
- Cotton, A.F.; Wilkinson, G. Advanced Inorganic Chemistry; Wiley-Interscience: New York, NY, USA, 1988. [Google Scholar]
- US EPA. Estimated Nitrate Concentrations in Groundwater Used for Drinking. Available online: https://www.epa.gov/nutrient-policy-data/estimated-nitrate-concentrations-groundwater-used-drinking (accessed on 26 March 2022).









| Electrode | Linear Range, µmol L−1 | Sensitivity |
|---|---|---|
| Carbon nanotube/PB paste [45] | 1.0–38.1 | 0.06 µA μmol−1 L |
| Surfactant-modified PB on glassy carbon [46] | 0.2–190.6 | 0.6 µA cm−2 μmol−1 L |
| Surfactant-modified PB on screen printed carbon [47] | 0.2–57.2 | 0.9 µA cm−2 μmol−1 L |
| Glass|FTO|PB (this work) | 1.7–99.2 | 0.8 µA cm−2 μmol−1 L |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valiūnienė, A.; Ziziunaite, G.; Virbickas, P. Application of Prussian Blue in Electrochemical and Optical Sensing of Free Chlorine. Sensors 2022, 22, 7768. https://doi.org/10.3390/s22207768
Valiūnienė A, Ziziunaite G, Virbickas P. Application of Prussian Blue in Electrochemical and Optical Sensing of Free Chlorine. Sensors. 2022; 22(20):7768. https://doi.org/10.3390/s22207768
Chicago/Turabian StyleValiūnienė, Aušra, Gerda Ziziunaite, and Povilas Virbickas. 2022. "Application of Prussian Blue in Electrochemical and Optical Sensing of Free Chlorine" Sensors 22, no. 20: 7768. https://doi.org/10.3390/s22207768
APA StyleValiūnienė, A., Ziziunaite, G., & Virbickas, P. (2022). Application of Prussian Blue in Electrochemical and Optical Sensing of Free Chlorine. Sensors, 22(20), 7768. https://doi.org/10.3390/s22207768

