Noncontact Sleeping Heartrate Monitoring Method Using Continuous-Wave Doppler Radar Based on the Difference Quadratic Sum Demodulation and Search Algorithm
Abstract
1. Introduction
2. Methods
2.1. Demodulation Method
2.2. Heart Rate Feature Extraction and Search Algorithm
Algorithm 1. Heartrate nearest neighbor search. |
Input: , , P; Output: H |
initial heart rate array : . |
calculate the Layer vector, and find the base layer value |
while H is empty do |
empty positions are replaced with values from or according to and min() |
if has no zero value |
calculate the layer vector. |
if the number of layer 3 |
H = , break |
else set the unqualified value to zero and continue the loop. |
end while |
3. Radar System and Experiments
3.1. Simulation Experiment of Motion-Controllable Cardboard
3.2. Unconstrained Sleep HR Monitoring
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HR | Heart rate |
ECG | Electrocardiogram |
RR | Respiratory rate |
RBMs | Random body movements |
CSD | Complex signal demodulation |
DACM | Differentiate and cross-multiply algorithm |
DQS | difference quadratic sum |
NNS | Nearest neighbor search |
IF | Intermediate frequency |
I | In-phase |
Q | Quadrature |
VCO | Voltage-controlled oscillator |
References
- Dong, S.Q.; Zhang, Y.; Ma, C.; Zhu, C.K.; Gu, Z.T.; Lv, Q.Y.; Zhang, B.; Li, C.Z.; Ran, L.X. Doppler Cardiogram: A Remote Detection of Human Heart Activities. IEEE Trans. Microw. Theory Tech. 2020, 68, 1132–1141. [Google Scholar] [CrossRef]
- Zhang, T.; Sarrazin, J.; Valerio, G.; Istrate, D. Estimation of Human Body Vital Signs Based on 60 GHz Doppler Radar Using a Bound-Constrained Optimization Algorithm. Sensors 2018, 18, 2254. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Lin, J.; Xiao, Y. Robust Overnight Monitoring of Human Vital Signs by a Non-contact Respiration and Heartbeat Detector. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 2235–2238. [Google Scholar]
- Tran, V.P.; Al-Jumaily, A.A.; Islam, S.M.S. Doppler Radar-Based Non-Contact Health Monitoring for Obstructive Sleep Apnea Diagnosis: A Comprehensive Review. Big Data Cogn. Comput. 2019, 3, 3. [Google Scholar] [CrossRef]
- Chuma, E.L.; Roger, L.L.B.; Oliveira, G.G.d.; Iano, Y.; Pajuelo, D. Internet of Things (IoT) Privacy–Protected, Fall-Detection System for the Elderly Using the Radar Sensors and Deep Learning. In Proceedings of the 2020 IEEE International Smart Cities Conference (ISC2), Piscataway, NJ, USA, 28 September–1 October 2020; pp. 1–4. [Google Scholar]
- Wang, F.; Skubic, M.; Rantz, M.; Cuddihy, P.E. Quantitative Gait Measurement With Pulse-Doppler Radar for Passive In-Home Gait Assessment. IEEE Trans. Biomed. Eng. 2014, 61, 2434–2443. [Google Scholar] [CrossRef] [PubMed]
- Chuma, E.L.; Iano, Y. A Movement Detection System Using Continuous-Wave Doppler Radar Sensor and Convolutional Neural Network to Detect Cough and Other Gestures. IEEE Sens. J. 2021, 21, 2921–2928. [Google Scholar] [CrossRef]
- Pour Ebrahim, M.; Sarvi, M.; Yuce, M.R. A Doppler Radar System for Sensing Physiological Parameters in Walking and Standing Positions. Sensors 2017, 17, 485. [Google Scholar] [CrossRef]
- Zakrzewski, M.; Vehkaoja, A.; Joutsen, A.S.; Palovuori, K.T.; Vanhala, J.J. Noncontact Respiration Monitoring During Sleep With Microwave Doppler Radar. IEEE Sens. J. 2015, 15, 5683–5693. [Google Scholar] [CrossRef]
- Tu, J.; Hwang, T.; Lin, J. Respiration Rate Measurement Under 1-D Body Motion Using Single Continuous-Wave Doppler Radar Vital Sign Detection System. IEEE Trans. Microw. Theory Tech. 2016, 64, 1937–1946. [Google Scholar] [CrossRef]
- Baboli, M.; Singh, A.; Soll, B.; Boric-Lubecke, O.; Lubecke, V.M. Wireless Sleep Apnea Detection Using Continuous Wave Quadrature Doppler Radar. IEEE Sens. J. 2020, 20, 538–545. [Google Scholar] [CrossRef]
- Mercuri, M.; Liu, Y.H.; Lorato, I.; Torfs, T.; Wieringa, F.; Bourdoux, A.; Van Hoof, C. A Direct Phase-Tracking Doppler Radar Using Wavelet Independent Component Analysis for Non-Contact Respiratory and Heart Rate Monitoring. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 632–643. [Google Scholar] [CrossRef]
- Li, C.Z.; Xiao, Y.M.; Lin, J.S. Experiment and spectral analysis of a low-power Ka-band heartbeat detector measuring from four sides of a human body. IEEE Trans. Microw. Theory Tech. 2006, 54, 4464–4471. [Google Scholar] [CrossRef]
- Hosseini, S.; Amindavar, H. A New Ka-Band Doppler Radar in Robust and Precise Cardiopulmonary Remote Sensing. IEEE Trans. Instrum. Meas. 2017, 66, 3012–3022. [Google Scholar] [CrossRef]
- Wang, G.C.; Gu, C.Z.; Inoue, T.; Li, C.Z. A Hybrid FMCW-Interferometry Radar for Indoor Precise Positioning and Versatile Life Activity Monitoring. IEEE Trans. Microw. Theory Tech. 2014, 62, 2812–2822. [Google Scholar] [CrossRef]
- Wang, J.Y.; Wang, X.; Chen, L.; Huangfu, J.T.; Li, C.Z.; Ran, L.X. Noncontact Distance and Amplitude-Independent Vibration Measurement Based on an Extended DACM Algorithm. IEEE Trans. Instrum. Meas. 2014, 63, 145–153. [Google Scholar] [CrossRef]
- Lv, Q.Y.; Ye, D.X.; Qiao, S.; Salamin, Y.; Huangfu, J.T.; Li, C.Z.; Ran, L.X. High Dynamic-Range Motion Imaging Based on Linearized Doppler Radar Sensor. IEEE Trans. Microw. Theory Tech. 2014, 62, 1837–1846. [Google Scholar] [CrossRef]
- Chernov, N.; Lesort, C. Least squares fitting of circles. J. Math. Imaging Vis. 2005, 23, 239–252. [Google Scholar] [CrossRef]
- Lv, Q.Y.; Min, L.T.; Cao, C.Q.; Zhou, S.G.; Zhou, D.Y.; Zhu, C.K.; Li, Y.; Zhu, Z.B.; Li, X.J.; Ran, L.X. Time-Domain Doppler Biomotion Detections Immune to Unavoidable DC Offsets. IEEE Trans. Instrum. Meas. 2021, 70, 10. [Google Scholar] [CrossRef]
- Lin, F.; Zhuang, Y.; Song, C.; Wang, A.S.; Li, Y.R.; Gu, C.Z.; Li, C.Z.; Xu, W.Y. SleepSense: A Noncontact and Cost-Effective Sleep Monitoring System. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 189–202. [Google Scholar] [CrossRef]
- Hong, H.; Zhang, L.; Gu, C.; Li, Y.S.; Zhou, G.X.; Zhu, X.H. Noncontact Sleep Stage Estimation Using a CW Doppler Radar. IEEE J. Emerg. Sel. Top. Circuits Syst. 2018, 8, 260–270. [Google Scholar] [CrossRef]
- Yang, Z.K.; Shi, H.P.; Zhao, S.; Huang, X.D. Vital Sign Detection during Large-Scale and Fast Body Movements Based on an Adaptive Noise Cancellation Algorithm Using a Single Doppler Radar Sensor. Sensors 2020, 20, 4183. [Google Scholar] [CrossRef]
- Kebe, M.; Gadhafi, R.; Mohammad, B.; Sanduleanu, M.; Saleh, H.; Al-Qutayri, M. Human Vital Signs Detection Methods and Potential Using Radars: A Review. Sensors 2020, 20, 1454. [Google Scholar] [CrossRef]
- Kondo, T.; Uhlig, T.; Pemberton, P.; Sly, P.D. Laser monitoring of chest wall displacement. Eur. Resp. J. 1997, 10, 1865–1869. [Google Scholar] [CrossRef]
- Singh, M.; Ramachandran, G. Reconstruction of sequential cardiac in-plane displacement patterns on the chest wall by laser speckle interferometry. IEEE Trans. Biomed. Eng. 1991, 38, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Gilgen-Ammann, R.; Schweizer, T.; Wyss, T. RR interval signal quality of a heart rate monitor and an ECG Holter at rest and during exercise. Eur. J. Appl. Physiol. 2019, 119, 1525–1532. [Google Scholar] [CrossRef] [PubMed]
- Kiriazi, J.E.; Islam, S.M.M.; Boric-Lubecke, O.; Lubecke, V.M. Sleep Posture Recognition With a Dual-Frequency Cardiopulmonary Doppler Radar. IEEE Access 2021, 9, 36181–36194. [Google Scholar] [CrossRef]
- Lv, Q.Y.; Chen, L.; An, K.; Wang, J.; Li, H.; Ye, D.X.; Huangfu, J.T.; Li, C.Z.; Ran, L.X. Doppler Vital Signs Detection in the Presence of Large-Scale Random Body Movements. IEEE Trans. Microw. Theory Tech. 2018, 66, 4261–4270. [Google Scholar] [CrossRef]
- Rong, Y.; Dutta, A.; Chiriyath, A.; Bliss, D.W. Motion-Tolerant Non-Contact Heart-Rate Measurements from Radar Sensor Fusion. Sensors 2021, 21, 1774. [Google Scholar] [CrossRef]
- Mercuri, M.; Lorato, I.R.; Liu, Y.H.; Wieringa, F.; Van Hoof, C.; Torfs, T. Vital-sign monitoring and spatial tracking of multiple people using a contactless radar-based sensor. Nat. Electron. 2019, 2, 252–262. [Google Scholar] [CrossRef]
Subject | Gender | Age | Weight | Height | Sleep Habit |
---|---|---|---|---|---|
Subject 1 | F | 24 | 50 | 1.56 | More time in a supine posture |
Subject 2 | M | 23 | 74 | 1.74 | More time in a supine posture, less movement during sleep |
Subject 3 | M | 24 | 70 | 1.67 | More time in a side-lying posture, more movement during sleep |
Subject | Group | Relative Error | Mean Value of HR Reference (bpm) | |||
---|---|---|---|---|---|---|
≤10% | 10–15% | >15% | ||||
Subject 1 | 1 | 74.7% | 16.7% | 8.6% | 54 | 6.3% |
2 | 76.6% | 16.0% | 7.4% | 57 | 6.3% | |
3 | 83.2% | 10.7% | 6.1% | 54 | 5.8% | |
Subject 2 | 4 | 78.7% | 8.5% | 12.8% | 51 | 6.6% |
5 | 89.1% | 7.7% | 3.2% | 61 | 4.2% | |
6 | 82.5% | 9.9% | 7.6% | 60 | 5.2% | |
Subject 3 | 7 | 70.4% | 14.4% | 15.2% | 56 | 7.3% |
8 | 64.8% | 12.5% | 22.7% | 53 | 9.6% | |
9 | 82.9% | 9.8% | 7.3% | 54 | 5.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Ni, X. Noncontact Sleeping Heartrate Monitoring Method Using Continuous-Wave Doppler Radar Based on the Difference Quadratic Sum Demodulation and Search Algorithm. Sensors 2022, 22, 7646. https://doi.org/10.3390/s22197646
Chen X, Ni X. Noncontact Sleeping Heartrate Monitoring Method Using Continuous-Wave Doppler Radar Based on the Difference Quadratic Sum Demodulation and Search Algorithm. Sensors. 2022; 22(19):7646. https://doi.org/10.3390/s22197646
Chicago/Turabian StyleChen, Xiao, and Xuxiang Ni. 2022. "Noncontact Sleeping Heartrate Monitoring Method Using Continuous-Wave Doppler Radar Based on the Difference Quadratic Sum Demodulation and Search Algorithm" Sensors 22, no. 19: 7646. https://doi.org/10.3390/s22197646
APA StyleChen, X., & Ni, X. (2022). Noncontact Sleeping Heartrate Monitoring Method Using Continuous-Wave Doppler Radar Based on the Difference Quadratic Sum Demodulation and Search Algorithm. Sensors, 22(19), 7646. https://doi.org/10.3390/s22197646