The Accuracy of Commercially Available Fitness Trackers in Patients after Stroke
Abstract
:1. Introduction
2. Materials and Methods
Experiment Methodology
3. Results
4. Discussion
Limits of Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Field, M.J.; Gebruers, N.; Shanmuga, S.T.; Nicholson, S.; Mead, G. Physical Activity after Stroke: A Systematic Review and Meta-Analysis. ISRN 2013, 2013, 1–13. [Google Scholar] [CrossRef]
- Thilarajah, S.; Mentiplay, B.F.; Bower, K.J.; Tan, D.; Pua, Y.H.; Williams, G.; Koh, G.; Clark, R.A. Factors Associated with Post-Stroke Physical Activity: A Systematic Review and Meta-Analysis. Arch. Phys. Med. Rehabil. 2018, 99, 1876–1889. [Google Scholar] [CrossRef]
- Billinger, S.A.; Arena, R.; Bernhardt, J.; Eng, J.J.; Franklin, B.A.; Johnson, C.M.; MacKay-Lyons, M.; Macko, R.F.; Mead, G.E.; Roth, E.J.; et al. Physical activity and exercise recommendations for stroke survivors: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2014, 45, 2532–2553. [Google Scholar] [CrossRef]
- Nicholson, S.; Sniehotta, F.; Van Wijck, F.; Greig, C.; Johnston, M.; McMurdo, M.E.T.; Dennis, M.; Mead, G.E. A Systematic Review of Perceived Barriers and Motivators to Physical Activity after Stroke. Int. J. Stroke 2013, 8, 357–364. [Google Scholar] [CrossRef]
- Wendel, N.; Macpherson, C.; Webber, K.; Hendron, K.; DeAngelis, T.; Colon-Semenza, C.; Ellis, T. Accuracy of Activity Trackers in Parkinson Disease: Should We Prescribe Them? Phys. Ther. 2018, 98, 705–714. [Google Scholar] [CrossRef]
- Ummels, D.; Beekman, E.; Theunissen, K.; Braun, S.; Beurskens, A.J. Counting Steps in Activities of Daily Living in People with a Chronic Disease Using Nine Commercially Available Fitness Trackers: Cross-Sectional Validity Study. JMIR mHealth uHealth 2018, 6, 70. [Google Scholar] [CrossRef]
- Jayaraman, C.; Mummidisetty, C.K.; Mannix-Slobig, A.; McGee Koch, L.; Jayaraman, A. Variables influencing wearable sensor outcome estimates in individuals with stroke and incomplete spinal cord injury: A pilot investigation validating two research grade sensors. J. NeuroEng. Rehabil. 2018, 15, 19. [Google Scholar] [CrossRef]
- Katzan, I.; Schuster, A.; Kinzy, T. Physical Activity Monitoring Using a Fitbit Device in Ischemic Stroke Patients: Prospective Cohort Feasibility Study. JMIR mHealth uHealth 2021, 9, e14494. [Google Scholar] [CrossRef]
- ActiGraph. ActiGraph, LLC. Available online: https://www.actigraphcorp.com/ (accessed on 25 August 2022).
- O’Brien, M.; Wojcik, W.; Fowles, J. Medical-Grade Physical Activity Monitoring for Measuring Step Count and Moderate-to-Vigorous Physical Activity: Validity and Reliability Study. JMIR mHealth uHealth 2018, 6, e10706. [Google Scholar] [CrossRef]
- Rand, D.; Eng, J.J.; Tang, P.F.; Jeng, J.S.; Hung, C. How Active Are People with Stroke? Stroke 2009, 40, 163–168. [Google Scholar] [CrossRef] [Green Version]
- Fulk, G.D.; Combs, S.A.; Danks, K.A.; Nirider, C.D.; Raja, B.; Reisman, D.S. Accuracy of 2 activity monitors in detecting steps in people with stroke and traumatic brain injury. Phys. Ther. 2014, 94, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Schneider, P.L.; Crouter, S.; Bassett, D.R. Pedometer Measures of Free-Living Physical Activity: Comparison of 13 Models. Med. Sci. Sports Exerc. 2004, 36, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Storm, F.A.; Heller, B.W.; Mazzà, C. Step Detection and Activity Recognition Accuracy of Seven Physical Activity Monitors. PLoS ONE 2015, 10, e0118723. [Google Scholar] [CrossRef] [PubMed]
- Kooiman, T.J.M.; Dontje, M.L.; Sprenger, S.R.; Krijnen, W.P.; van der Schans, C.P.; de Groot, M. Reliability and validity of ten consumer activity trackers. BMC Sports Sci. Med. Rehabil. 2015, 7, 24. [Google Scholar] [CrossRef]
- Kaewkannate, K.; Kim, S. A comparison of wearable fitness devices. BMC Public Health 2016, 16, 433. [Google Scholar] [CrossRef]
- Case, M.A.; Burwick, H.A.; Volpp, K.G.; Patel, M.S. Accuracy of smartphone applications and wearable devices for tracking physical activity data JAMA. J. Am. Med. Assoc 2015, 313, 625–626. [Google Scholar] [CrossRef]
- Husted, H.M.; Llewellyn, T.L. The accuracy of pedometers in measuring walking steps on a treadmill in college students. Int. J. Exerc. Sci 2017, 10, 146–153. [Google Scholar]
- Leth, S.; Hansen, J.; Nielsen, O.W.; Dinesen, B. Evaluation of Commercial Self-Monitoring Devices for Clinical Purposes: Results from the Future Patient Trial, Phase I. Sensors 2017, 17, 211. [Google Scholar] [CrossRef]
- Alinia, P.; Cain, C.; Fallahzadeh, R.; Shahrokni, A.; Cook, D.; Ghasemzadeh, H. How Accurate Is Your Activity Tracker? A Comparative Study of Step Counts in Low-Intensity Physical Activities. JMIR mHealth uHealth 2017, 5, e106. [Google Scholar] [CrossRef]
- Beevi, F.H.A.; Miranda, J.; Pedersen, C.F.; Wagner, S. An Evaluation of Commercial Trackers for Monitoring Slow Walking Speed Populations. Telemed. e-Health 2016, 22, 441–449. [Google Scholar] [CrossRef]
- Tedesco, S.; Barton, J.; O’Flynn, B. A Review of Activity Trackers for Senior Citizens: Research Perspectives, Commercial Landscape and the Role of the Insurance Industry. Sensors 2017, 17, 1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauritzen, J.; Muñoz, A.; Luis, S.J.; Civit, A. The usefulness of activity trackers in elderly with reduced mobility: A case study. Stud. Health Technol. Inf. 2013, 192, 759–762. [Google Scholar] [CrossRef]
- Paul, S.S.; Tiedemann, A.; Hassett, L.M.; Ramsay, E.; Kirkham, C.; Chagpar, S.; Sherrington, C. Validity of the Fitbit activity tracker for measuring steps in community-dwelling older adults. BMJ Open Sport Exerc. Med. 2015, 1, e000013. [Google Scholar] [CrossRef]
- Simpson, L.; Eng, J.; Klassen, T.; Lim, S.; Louie, D.; Parappilly, B.; Sakakibara, B.; Zbogar, D. Capturing step counts at slow walking speeds in older adults: Comparison of ankle and waist placement of measuring device. J. Rehabil. Med. 2015, 47, 830–835. [Google Scholar] [CrossRef]
- Tedesco, S.; Sica, M.; Ancillao, A.; Timmons, S.; Barton, J.; O’Flynn, B. Accuracy of consumer-level and research-grade activity trackers in ambulatory settings in older adults. PLoS ONE 2019, 14, e0216891. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.S.; Sherrington, C.; Zheng, E.R.Y.; Franco, M.R.; Tiedemann, A. Effect of interventions using physical activity trackers on physical activity in people aged 60 years and over: A systematic review and meta-analysis. Br. J. Sports Med. 2020, 54, 1188–1194. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.K. Wearable Sensor Technology to Measure Physical Activity (PA) in the Elderly. Curr. Geri. Rep. 2019, 8, 55–66. [Google Scholar] [CrossRef]
- Wong, C.; Mentis, H.; Kuber, R. The bit doesn’t fit: Evaluation of a commercial activity-tracker at slower walking speeds. Gait Posture 2018, 59, 177–181. [Google Scholar] [CrossRef]
- Carroll, S.L.; Greig, C.A.; Lewis, S.J.; McMurdo, M.E.; Sniehotta, F.F.; Johnston, M.; Johnston, D.W.; Scopes, J.; Mead, G.E. The Use of Pedometers in Stroke Survivors: Are They Feasible and How Well Do They Detect Steps? Arch. Phys. Med. Rehabil. 2012, 93, 466–470. [Google Scholar] [CrossRef]
- Fokkema, T.; Kooiman, T.J.; Krijnen, W.P.; Van der Schans, C.P.; DE Groot, M. Reliability and Validity of Ten Consumer Activity Trackers Depend on Walking Speed. Med. Sci. Sports Exerc. 2017, 49, 793–800. [Google Scholar] [CrossRef]
- De Ridder, R.; De Blaiser, C. Activity trackers are not valid for step count registration when walking with crutches. Gait Posture 2019, 70, 30–32. [Google Scholar] [CrossRef]
- Singh, A.K.; Farmer, C.; Van Den Berg, M.L.E.; Killington, M.; Barr, C.H.J. Accuracy of the FitBit at walking speeds and cadences relevant to clinical rehabilitation populations. Disabil. Health J. 2016, 9, 320–323. [Google Scholar] [CrossRef] [PubMed]
- Edwardson, C.; Winkler, E.; Bodicoat, D.; Yates, T.; Davies, M.; Dunstan, D.; Healy, G. Considerations when using the activPAL monitor in field-based research with adult populations. J. Sport Health Sci. 2017, 6, 162–178. [Google Scholar] [CrossRef]
- Mudge, S.N.; Stott, S.; Walt, S.E. Criterion Validity of the StepWatch Activity Monitor as a Measure of Walking Activity in Patients After Stroke. Arch. Phys. Med. Rehabil. 2007, 88, 1710–1715. [Google Scholar] [CrossRef]
- Cesar, G.; Buster, T.; Patten, A.; Perlaki, B.; Burnfield, J. Reliability and Accuracy of Commercially-Available Wrist Step-Count Device for Children and Adolescents with Neurologic-Induced Gait Impairment. Arch. Phys. Med. 2021, 102, e14. [Google Scholar] [CrossRef]
- Kooner, P.; Schubert, T.; Howard, J.L.; Lanting, B.A.; Teeter, M.G.; Vasarhelyi, E.M. Evaluation of the Effect of Gait Aids, Such as Canes, Crutches, and Walkers, on the Accuracy of Step Counters in Healthy Individuals. Orthop. Res. Rev. 2021, 13, 1–8. [Google Scholar] [CrossRef]
- Clay, L.; Webb, M.; Hargest, C.; Adhia, D.B. Gait quality and velocity influences activity tracker accuracy in individuals post-stroke. Top. Stroke Rehabil. 2019, 26, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Głowiński, S.; Ptak, M. A kinematic model of a humanoid lower limb exoskeleton with pneumatic actuators. Acta Bioeng. Biomech. 2022, 24, 145–157. [Google Scholar] [CrossRef]
Walking Aid | Relative Error (%) | Healthy UL | Paretic UL | Healthy LL | Paretic LL | Waist | Sex (m:f) | Age (Year, SD) | Type of Stoke (Isch:Hem) |
---|---|---|---|---|---|---|---|---|---|
No aid (n = 7) | MARD | 5.25 | 3.05 | 1.35 | 6.25 | 0.47 | 4:3 | 6:1 | |
SD | 6.19 | 4.12 | 1.34 | 8.05 | 0.50 | 51.71 | |||
MAX | 20.77 | 13.76 | 4.27 | 26.89 | 1.40 | (±8.90) | |||
MIN | 0 | 0 | 0 | 0.88 | 0 | ||||
Single-point stick (n = 8) | MARD | 9.84 | 3.74 | 1.33 | 11.08 | 3.66 | 5:3 | 7:1 | |
SD | 14.17 | 6.17 | 0.86 | 16.58 | 8.48 | 61.37 | |||
MAX | 44.93 | 19.29 | 3.23 | 40.16 | 26.09 | (±13.58) | |||
MIN | 0.00 | 0.00 | 0.71 | 0,00 | 0.00 | ||||
Rollator (n = 9) | MARD | 85.67 | 85.07 | 10.82 | 4.82 | 3.36 | 6:3 | 7:2 | |
SD | 33.18 | 25.19 | 35.20 | 14.08 | 5.76 | 62.44 | |||
MAX | 100 | 100 | 151.33 | 61.06 | 19.69 | (±12.06) | |||
MIN | 4.50 | 27.87 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holubová, A.; Malá, E.; Hoidekrová, K.; Pětioký, J.; Ďuriš, A.; Mužík, J. The Accuracy of Commercially Available Fitness Trackers in Patients after Stroke. Sensors 2022, 22, 7392. https://doi.org/10.3390/s22197392
Holubová A, Malá E, Hoidekrová K, Pětioký J, Ďuriš A, Mužík J. The Accuracy of Commercially Available Fitness Trackers in Patients after Stroke. Sensors. 2022; 22(19):7392. https://doi.org/10.3390/s22197392
Chicago/Turabian StyleHolubová, Anna, Eliška Malá, Kristýna Hoidekrová, Jakub Pětioký, Andrea Ďuriš, and Jan Mužík. 2022. "The Accuracy of Commercially Available Fitness Trackers in Patients after Stroke" Sensors 22, no. 19: 7392. https://doi.org/10.3390/s22197392
APA StyleHolubová, A., Malá, E., Hoidekrová, K., Pětioký, J., Ďuriš, A., & Mužík, J. (2022). The Accuracy of Commercially Available Fitness Trackers in Patients after Stroke. Sensors, 22(19), 7392. https://doi.org/10.3390/s22197392