Objective Signal Analysis for Investigating Feasibility of Active Noise Cancellation in Hearing Screening
Abstract
:1. Introduction
2. Method
2.1. Study Equipment and Test Materials
2.2. Study Participants
2.3. Proposed Objective Evaluation System
2.4. Experiment Design
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Noise Volume (dB SPL) | In-Ear ANC Model | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
500 Hz | 1000 Hz | 2000 Hz | 4000 Hz | ||||||||||||||
ANC-ON | ANC-OFF | ANC-ON | ANC-OFF | ANC-ON | ANC-OFF | ANC-ON | ANC-OFF | ||||||||||
ρ | PR | ρ | PR | ρ | PR | ρ | PR | ρ | PR | ρ | PR | ρ | PR | ρ | PR | ||
Stable noise | 50 | 85% | 100% | 84% | 96% | 86% | 100% | 85% | 96% | 89% | 100% | 83% | 96% | 86% | 100% | 85% | 96% |
60 | 64% | 96% | 52% | 87% | 63% | 83% | 51% | 57% | 70% | 78% | 54% | 78% | 74% | 96% | 53% | 91% | |
70 | 56% | 83% | 47% | 13% | 50% | 39% | 47% | 8% | 57% | 17% | 52% | 4% | 48% | 57% | 41% | 48% | |
80 | 49% | 61% | 45% | 0% | 53% | 9% | 40% | 0% | 48% | 4% | 46% | 0% | 40% | 13% | 39% | 0% | |
90 | 38% | 0% | 28% | 0% | 44% | 0% | 23% | 0% | 38% | 0% | 35% | 0% | 33% | 0% | 31% | 0% | |
Unstable noise | 50 | 86% | 87% | 76% | 87% | 85% | 96% | 80% | 96% | 82% | 100% | 80% | 100% | 90% | 100% | 87% | 100% |
60 | 73% | 87% | 35% | 52% | 75% | 78% | 59% | 48% | 67% | 87% | 42% | 83% | 76% | 100% | 37% | 100% | |
70 | 38% | 61% | 31% | 0% | 62% | 35% | 50% | 0% | 40% | 43% | 37% | 13% | 40% | 74% | 28% | 78% | |
80 | 29% | 26% | 25% | 0% | 59% | 4% | 49% | 0% | 33% | 13% | 28% | 4% | 28% | 9% | 24% | 0% | |
90 | 29% | 0% | 22% | 0% | 59% | 0% | 46% | 0% | 33% | 0% | 26% | 0% | 24% | 0% | 23% | 0% | |
Noise volume (dB SPL) | Over-ear ANC model | ||||||||||||||||
500 Hz | 1000 Hz | 2000 Hz | 4000 Hz | ||||||||||||||
ANC-ON | ANC-OFF | ANC-ON | ANC-OFF | ANC-ON | ANC-OFF | ANC-ON | ANC-OFF | ||||||||||
ρ | PR | ρ | PR | ρ | PR | ρ | PR | ρ | PR | ρ | PR | ρ | PR | ρ | PR | ||
Stable noise | 50 | 86% | 100% | 80% | 100% | 80% | 100% | 80% | 100% | 85% | 100% | 81% | 100% | 83% | 100% | 81% | 100% |
60 | 67% | 100% | 65% | 91% | 63% | 95% | 59% | 95% | 63% | 95% | 60% | 100% | 64% | 100% | 57% | 100% | |
70 | 56% | 91% | 46% | 14% | 49% | 64% | 47% | 27% | 51% | 67% | 50% | 62% | 45% | 95% | 41% | 95% | |
80 | 41% | 36% | 41% | 0% | 40% | 5% | 36% | 0% | 48% | 14% | 40% | 10% | 35% | 50% | 32% | 41% | |
90 | 39% | 0% | 27% | 0% | 39% | 0% | 31% | 0% | 45% | 5% | 36% | 0% | 33% | 5% | 24% | 5% | |
Unstable noise | 50 | 85% | 100% | 76% | 100% | 75% | 100% | 74% | 100% | 81% | 100% | 79% | 100% | 80% | 100% | 80% | 100% |
60 | 58% | 100% | 53% | 41% | 67% | 91% | 58% | 73% | 65% | 95% | 66% | 86% | 69% | 100% | 59% | 100% | |
70 | 52% | 50% | 44% | 0% | 47% | 32% | 41% | 0% | 44% | 62% | 39% | 48% | 45% | 86% | 37% | 82% | |
80 | 42% | 0% | 32% | 0% | 42% | 0% | 41% | 0% | 42% | 33% | 35% | 14% | 41% | 41% | 29% | 32% | |
90 | 41% | 0% | 28% | 0% | 43% | 0% | 31% | 0% | 42% | 5% | 34% | 0% | 39% | 0% | 25% | 0% | |
Noise volume (dB SPL) | Circumaural ANC model | ||||||||||||||||
500 Hz | 1000 Hz | 2000 Hz | 4000 Hz | ||||||||||||||
ANC-ON | ANC-OFF | ANC-ON | ANC-OFF | ANC-ON | ANC-OFF | ANC-ON | ANC-OFF | ||||||||||
ρ | PR | ρ | PR | ρ | PR | ρ | PR | ρ | PR | ρ | PR | ρ | PR | ρ | PR | ||
Stable noise | 50 | 86% | 100% | 84% | 100% | 82% | 100% | 74% | 100% | 89% | 100% | 88% | 100% | 91% | 100% | 87% | 100% |
60 | 74% | 100% | 57% | 83% | 69% | 100% | 57% | 91% | 72% | 100% | 66% | 100% | 78% | 100% | 76% | 100% | |
70 | 59% | 96% | 41% | 26% | 59% | 52% | 43% | 39% | 51% | 87% | 41% | 91% | 61% | 100% | 47% | 100% | |
80 | 56% | 39% | 39% | 9% | 52% | 17% | 39% | 4% | 41% | 30% | 36% | 17% | 43% | 96% | 32% | 96% | |
90 | 53% | 0% | 34% | 0% | 46% | 0% | 31% | 0% | 32% | 0% | 29% | 0% | 37% | 43% | 28% | 39% | |
Unstable noise | 50 | 86% | 100% | 72% | 96% | 84% | 100% | 74% | 100% | 85% | 100% | 83% | 100% | 93% | 100% | 93% | 100% |
60 | 66% | 96% | 59% | 61% | 67% | 87% | 66% | 30% | 67% | 96% | 57% | 96% | 79% | 100% | 67% | 100% | |
70 | 55% | 52% | 54% | 4% | 53% | 48% | 41% | 22% | 43% | 87% | 39% | 74% | 48% | 100% | 43% | 96% | |
80 | 51% | 43% | 49% | 0% | 51% | 4% | 41% | 0% | 37% | 22% | 34% | 9% | 36% | 87% | 30% | 70% | |
90 | 45% | 0% | 35% | 0% | 50% | 0% | 40% | 0% | 36% | 0% | 35% | 0% | 32% | 52% | 26% | 39% |
References
- Saliba, J.; Al-Reefi, M.; Carriere, J.S.; Verma, N.; Provencal, C.; Rappaport, J.M. Accuracy of Mobile-Based Audiometry in the Evaluation of Hearing Loss in Quiet and Noisy Environments. Otolaryngol. Head Neck Surg. 2017, 156, 706–711. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-Y.H.; Chu, Y.-C.; Lai, Y.-H.; Cheng, H.-L.; Lai, F.; Cheng, Y.-F.; Liao, W.-H. A Smartphone-Based Approach to Screening for Sudden Sensorineural Hearing Loss: Cross-Sectional Validity Study. JMIR Mhealth Uhealth 2020, 8, e23047. [Google Scholar] [CrossRef] [PubMed]
- Irace, A.L.; Sharma, R.K.; Reed, N.S.; Golub, J.S. Smartphone-Based Applications to Detect Hearing Loss: A Review of Current Technology. J. Am. Geriatr. Soc. 2021, 69, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Colsman, A.; Supp, G.G.; Neumann, J.; Schneider, T.R. Evaluation of Accuracy and Reliability of a Mobile Screening Audiometer in Normal Hearing Adults. Front. Psychol. 2020, 11, 744. [Google Scholar] [CrossRef] [PubMed]
- Jayawardena, A.; Waller, B.; Edwards, B.; Larsen-Reindorf, R.; Esinam Anomah, J.; Frimpong, B.; Gina, A.; Netterville, J.; Saunders, J.; Basura, G.J. Portable audiometric screening platforms used in low-resource settings: A review. J. Laryngol. Otol. 2019, 133, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.C.; Cheng, Y.F.; Lai, Y.H.; Tsao, Y.; Tu, T.Y.; Young, S.T.; Chen, T.S.; Chung, Y.F.; Lai, F.; Liao, W.H. A Mobile Phone-Based Approach for Hearing Screening of School-Age Children: Cross-Sectional Validation Study. JMIR Mhealth Uhealth 2019, 7, e12033. [Google Scholar] [CrossRef] [PubMed]
- Barczik, J.; Serpanos, Y.C. Accuracy of smartphone self-hearing test applications across frequencies and earphone styles in adults. Am. J. Audiol. 2018, 27, 570–580. [Google Scholar] [CrossRef]
- Franks, J.R.; Engel, D.P., 3rd; Themann, C.L. Real ear attenuation at threshold for three audiometric headphone devices: Implications for maximum permissible ambient noise level standards. Ear Hear. 1992, 13, 2–10. [Google Scholar] [CrossRef]
- Frank, T.; Williams, D.L. Ambient noise levels in audiometric test rooms used for clinical audiometry. Ear Hear. 1993, 14, 414–422. [Google Scholar] [CrossRef]
- Jain, C.; Abraham, A.; Chethan, Y. Effect of Ambient Noise on Pure Tone Hearing Screening Test Conducted in Indian Rural Locations. JAIISH 2017, 35, 58–65. [Google Scholar]
- Margolis, R.H.; Madsen, B. The acoustic test environment for hearing testing. J. Am. Acad. Audiol. 2015, 26, 784–791. [Google Scholar] [CrossRef]
- Frank, T.; Greer, A.C.; Magistro, D.M. Hearing thresholds, threshold repeatability, and attenuation values for passive noise-reducing earphone enclosures. Am. Ind. Hyg. Assoc. J. 1997, 58, 772–778. [Google Scholar] [CrossRef]
- Kim, K.; Burkard, R.F.; Lockwood, A.H.; Salvi, R.J. Effects of background noise on audiometric thresholds during positron emission tomography: Passive and active noise-reduction. Scand. Audiol. 2000, 29, 211–216. [Google Scholar] [CrossRef]
- Berger, E.H. Attenuation of earplugs worn in combination with earmuffs. Occup. Health Saf. 1984, 72–73. [Google Scholar]
- Shalool, A.; Zainal, N.; Gan, K.B.; Umat, C.; Mukari, S.Z.M.-S. Passive noise reduction improvement by modifying the standard audiology TDH-49 headphone. Adv. Sci. Lett. 2017, 23, 1320–1324. [Google Scholar] [CrossRef]
- Zhou, H.; Li, B.; Huang, G. Sound absorption characteristics of polymer microparticles. J. Appl. Polym. Sci. 2006, 101, 2675–2679. [Google Scholar] [CrossRef]
- Cao, L.; Fu, Q.; Si, Y.; Ding, B.; Yu, J. Porous materials for sound absorption. Compos. Commun. 2018, 10, 25–35. [Google Scholar] [CrossRef]
- Rudzyn, B.; Fisher, M. Performance of personal active noise reduction devices. Appl. Acoust. 2012, 73, 1159–1167. [Google Scholar] [CrossRef]
- Clark, J.G.; Brady, M.; Earl, B.R.; Scheifele, P.M.; Snyder, L.; Clark, S.D. Use of noise cancellation earphones in out-of-booth audiometric evaluations. Int. J. Audiol. 2017, 56, 989–996. [Google Scholar] [CrossRef]
- Bromwich, M.A.; Parsa, V.; Lanthier, N.; Yoo, J.; Parnes, L.S. Active Noise Reduction Audiometry: A Prospective Analysis of a New Approach to Noise Management in Audiometric Testing. Laryngoscope 2008, 118, 104–109. [Google Scholar] [CrossRef]
- Chang, H.-Y.; Luo, C.-H.; Lo, T.-S.; Tai, C.-C. Compensated active noise cancellation earphone for audiometric screening tests in noisy environments. Int. J. Audiol. 2019, 58, 747–753. [Google Scholar] [CrossRef]
- Lo, A.H.; McPherson, B. Hearing screening for school children: Utility of noise-cancelling headphones. BMC Ear Nose Throat Disord. 2013, 13, 6. [Google Scholar] [CrossRef] [Green Version]
- Kuo, S. Adaptive Active Noise Control Systems: Algorithms and Digital Signal Processing (DSP) Implementations; SPIE: Bellingham, WA, USA, 1995; Volume 10279. [Google Scholar]
- Shi, D.; Shi, C.; Gan, W.-S. Effect of the audio amplifier’s distortion on feedforward active noise control. In Proceedings of the 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Kuala Lumpur, Malaysia, 12–15 December 2017; pp. 469–473. [Google Scholar]
- Mukaka, M.M. A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar]
- Sedgwick, P. Pearson’s correlation coefficient. BMJ 2012, 345, e4483. [Google Scholar] [CrossRef]
- Chernick, M.R.; Friis, R.H. Correlation, Linear Regression, and Logistic Regression. In Introductory Biostatistics for the Health Sciences; Chernick, M.R., Friis, R.H., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2003; pp. 251–294. [Google Scholar]
- Yi-Rou, C.; Cheng Yuan, C.; Kuo, S.M. Active noise control and secondary path modeling algorithms for earphones. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; pp. 246–251. [Google Scholar]
- Ang, L.Y.L.; Koh, Y.K.; Lee, H.P. The performance of active noise-canceling headphones in different noise environments. Appl. Acoust. 2017, 122, 16–22. [Google Scholar] [CrossRef]
- ANSI S3.6 2004; A.N.S.T. Specification for Audiometers. ANSI: Washington, DC, USA, 2004.
- Hopper, G.; Adhami, R. An FFT-based speech recognition system. J. Frankl. Inst. 1992, 329, 555–562. [Google Scholar] [CrossRef]
- Singh, N.; Khan, R. Speaker Recognition and Fast Fourier Transform. Int. J. 2015, 5, 530–534. [Google Scholar]
- ISO 8253-1: 2010; Standardization, I.O.f. Acoustics-Audiometric Test Methods. Part 1: Pure Tone Air and Bone Conduction Audiometry. European Committee for Standardization: Brussels, Belgium, 2010.
- Bai, M.R.; Pan, W.; Chen, H. Active feedforward noise control and signal tracking of headsets: Electroacoustic analysis and system implementation. J. Acoust. Soc. Am. 2018, 143, 1613–1622. [Google Scholar] [CrossRef]
- Zou, H.S.; Qiu, X.J. A review of research on active noise control near human ear in complex sound field. Acta Phys. Sin-Ch. Ed. 2019, 68. [Google Scholar] [CrossRef]
- Foo, S.-W.; Senthilkumar, T.; Averty, C. Active noise cancellation headset. In Proceedings of the 2005 IEEE International Symposium on Circuits and Systems, Kobe, Japan, 23–26 May 2005; pp. 268–271. [Google Scholar]
- Liu, J.; Li, C. Active soundproof earmuffs system with passive noise insulation structure compensation. Appl. Acoust. 2020, 165, 107321. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, W.; Phoha, V.V.; Sun, W.; Jin, Z. EarEcho: Using ear canal echo for wearable authentication. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2019, 3, 1–24. [Google Scholar] [CrossRef]
- Dixit, S.; Nagaria, D. LMS Adaptive Filters for Noise Cancellation: A Review. Int. J. Electr. Comput. Eng. 2017, 7, 2520. [Google Scholar] [CrossRef]
- Liebich, S.; Fabry, J.; Jax, P.; Vary, P. Signal processing challenges for active noise cancellation headphones. In Proceedings of the Speech Communication 13th ITG-Symposium, Oldenburg, Germany, 10–12 October 2018; pp. 1–5. [Google Scholar]
- Kuo, S.M.; Chen, Y.-R.; Chang, C.-Y.; Lai, C.-W. Development and evaluation of light-weight active noise cancellation earphones. Appl. Sci. 2018, 8, 1178. [Google Scholar] [CrossRef]
- Ghasemi, S.; Kamil, R.; Marhaban, M.H. Nonlinear Thf-Fxlms Algorithm for Active Noise Control with Loudspeaker Nonlinearity. Asian J. Control 2016, 18, 502–513. [Google Scholar] [CrossRef]
- Priese, S.; Bruhnken, C.; Voss, D.; Peissig, J.; Reithmeier, E. The Need for Psychoacoustics in Active Noise Cancellation. 2013. Available online: https://www.imr.uni-hannover.de/fileadmin/imr/Forschung/Publikationen_bak/000377.pdf (accessed on 28 August 2022).
- Warren, E.; Grassley, C. Over-the-Counter Hearing Aids: The Path Forward. JAMA Intern. Med. 2017, 177, 609–610. [Google Scholar] [CrossRef]
- Urbanski, D.; Hernandez, H.; Oleson, J.; Wu, Y.-H. Toward a New Evidence-Based Fitting Paradigm for Over-the-Counter Hearing Aids. Am. J. Audiol. 2021, 30, 43–66. [Google Scholar] [CrossRef]
- Sabin, A.T.; Van Tasell, D.J.; Rabinowitz, B.; Dhar, S. Validation of a self-fitting method for over-the-counter hearing aids. Trends Hear. 2020, 24, 2331216519900589. [Google Scholar] [CrossRef]
Noise Volume (dB SPL) | 0.5 kHz | 1 kHz | 2 kHz | 4 kHz | Average |
---|---|---|---|---|---|
50 | 82% | 80% | 84% | 86% | 83% |
60 | 60% | 63% | 63% | 66% | 63% |
70 | 48% | 49% | 46% | 44% | 46% |
80 | 42% | 45% | 39% | 34% | 40% |
90 | 35% | 40% | 35% | 30% | 35% |
Noise Volume (dB SPL) | In-Ear | Over-Ear | Combined | Average | ||||
---|---|---|---|---|---|---|---|---|
S | US | S | US | S | US | S | US | |
50 | 85% | 83% | 82% | 79% | 85% | 84% | 84% | 82% |
60 | 60% | 58% | 62% | 62% | 69% | 66% | 64% | 62% |
70 | 50% | 41% | 48% | 44% | 50% | 47% | 49% | 44% |
80 | 45% | 34% | 39% | 38% | 42% | 41% | 42% | 38% |
90 | 34% | 33% | 34% | 35% | 36% | 37% | 35% | 35% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, H.-L.; Han, J.-Y.; Zheng, W.-Z.; Cheng, Y.-F.; Chu, Y.-C.; Lin, C.-M.; Chiang, M.-C.; Liao, W.-H.; Lai, Y.-H. Objective Signal Analysis for Investigating Feasibility of Active Noise Cancellation in Hearing Screening. Sensors 2022, 22, 7329. https://doi.org/10.3390/s22197329
Cheng H-L, Han J-Y, Zheng W-Z, Cheng Y-F, Chu Y-C, Lin C-M, Chiang M-C, Liao W-H, Lai Y-H. Objective Signal Analysis for Investigating Feasibility of Active Noise Cancellation in Hearing Screening. Sensors. 2022; 22(19):7329. https://doi.org/10.3390/s22197329
Chicago/Turabian StyleCheng, Hsiu-Lien, Ji-Yan Han, Wei-Zhong Zheng, Yen-Fu Cheng, Yuan-Chia Chu, Chia-Mei Lin, Ming-Chang Chiang, Wen-Huei Liao, and Ying-Hui Lai. 2022. "Objective Signal Analysis for Investigating Feasibility of Active Noise Cancellation in Hearing Screening" Sensors 22, no. 19: 7329. https://doi.org/10.3390/s22197329
APA StyleCheng, H.-L., Han, J.-Y., Zheng, W.-Z., Cheng, Y.-F., Chu, Y.-C., Lin, C.-M., Chiang, M.-C., Liao, W.-H., & Lai, Y.-H. (2022). Objective Signal Analysis for Investigating Feasibility of Active Noise Cancellation in Hearing Screening. Sensors, 22(19), 7329. https://doi.org/10.3390/s22197329