Fast Control for Backlight Power-Saving Algorithm Using Motion Vectors from the Decoded Video Stream
Abstract
:1. Introduction
- To the best of our knowledge, the proposed method is the first work to use a motion vector to design the method for the backlight power-saving algorithm.
- The motion vector is used as the similarity measurement of the adjacent frames, and if qualified, the power-saving decision (the clipping point) of the current frame will automatically be the one of the previous frame, without activating the whole power-saving method in order to save the computation time.
- The availability of the motion vector is at no further expense, since it is the product accompanied with the decoding of the video images in the display/receiver end.
- The proposed algorithm of processing the motion vector is very simple to avoid the overhead of the proposed work.
- The combination of the above two points makes the proposed work a fast algorithm. The proposed work can be used with the existing methods with the use of clipping points.
2. Materials and Methods
2.1. Existing Clipping-Point-Based Backlight Power-Saving Algorithms
2.1.1. I2GEC: Integrity-Based Gray-Level Error Control
2.1.2. MGEC: Multi-Histogram-Based Gray Level Error Control
2.1.3. Gaussian: Adaptive Local Dimming Backlight Control Based on Gaussian Distribution
2.1.4. Power Model
2.2. Fast Algorithm for Power Control and Image-Quality Control Using Motion Vectors
2.2.1. Motion Vector Estimation (Performed at the Encoder)
2.2.2. The Proposed Power-Saving Method Using Motion Vectors
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Results of the Power-Saving Algorithm at Three Thresholds
Time | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
I2GEC [13] | MGEC4 [14] | MGEC16 [14] | Gaussian [17] | |||||||||
Thresholds | 0 | 15,000 | 30,000 | 0 | 15,000 | 30,000 | 0 | 15,000 | 30,000 | 0 | 15,000 | 30,000 |
NASASOF-WindTunnelTesting_100 | 27.63 | 22.03 | 8.83 | 330.19 | 243.06 | 125.07 | 391.87 | 275.78 | 136.31 | 12,430.01 | 8540.83 | 1945.16 |
NASASF-ISSLife_0324 | 27.58 | 8.83 | 7.84 | 319.13 | 127.79 | 113.60 | 343.16 | 123.45 | 118.20 | 11,980.38 | 3490.33 | 2751.46 |
NASASOF-WindTunnelTesting_0324 | 32.52 | 34.69 | 15.16 | 413.58 | 418.85 | 206.54 | 433.74 | 434.84 | 212.30 | 12,436.08 | 13,156.24 | 4644.61 |
NASA-EPAQ_0325 | 30.83 | 34.52 | 30.17 | 261.37 | 278.75 | 268.34 | 271.89 | 280.82 | 277.96 | 12,521.76 | 12,887.76 | 12,548.58 |
NASASF-FOT_0325 | 25.83 | 8.38 | 7.32 | 270.73 | 104.26 | 114.28 | 272.17 | 113.52 | 114.38 | 14,898.99 | 1909.27 | 1105.39 |
Average | 28.88 | 21.69 (−25.21%) | 13.86 (−52.01%) | 319.00 | 234.5 (−26.48%) | 165.56 (−48.10%) | 342.57 | 245.68 (−28.28%) | 171.8 (−49.84%) | 12,853.44 | 7996.89 (−37.78%) | 4599.04 (−64.22) |
PSNR | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
I2GEC [13] | MGEC4 [14] | MGEC16 [14] | Gaussian [17] | |||||||||
Thresholds | 0 | 15,000 | 30,000 | 0 | 15,000 | 30,000 | 0 | 15,000 | 30,000 | 0 | 15,000 | 30,000 |
NASASOF-WindTunnelTesting_100 | 30.10 | 30.11 | 30.12 | 37.49 | 37.58 | 37.65 | 34.97 | 35.07 | 35.16 | 30.11 | 30.09 | 30.10 |
NASASF-ISSLife_0324 | 30.12 | 30.11 | 30.11 | 36.92 | 37.21 | 39.87 | 35.55 | 35.83 | 35.83 | 30.77 | 30.81 | 30.81 |
NASASOF-WindTunnelTesting_0324 | 30.13 | 30.13 | 30.10 | 39.72 | 39.73 | 39.87 | 38.80 | 38.80 | 38.87 | 40.90 | 40.90 | 40.92 |
NASA-EPAQ_0325 | 30.09 | 30.09 | 30.09 | 38.89 | 38.89 | 38.89 | 38.80 | 38.80 | 38.80 | 36.03 | 36.03 | 36.03 |
NASASF-FOT_0325 | 30.15 | 30.13 | 30.13 | 36.70 | 37.05 | 37.05 | 36.98 | 37.39 | 37.39 | 30.41 | 30.41 | 30.41 |
Average (differences from original) | 30.12 | 30.11 (−0.01) | 30.11 (−0.01) | 36.74 | 36.72 (−0.02) | 38.65 (1.91) | 37.02 | 37.18 (0.16) | 37.21 (0.19) | 33.65 | 33.65 (0.00) | 33.66 (0.01) |
Power | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
I2GEC [13] | MGEC4 [14] | MGEC16 [14] | Gaussian [17] | |||||||||
Thresholds | 0 | 15,000 | 30,000 | 0 | 15,000 | 30,000 | 0 | 15,000 | 30,000 | 0 | 15,000 | 30,000 |
NASASOF-WindTunnelTesting_100 | 0.775 | 0.775 | 0.775 | 1.153 | 1.157 | 1.159 | 1.062 | 1.066 | 1.069 | 0.839 | 0.834 | 0.836 |
NASASF-ISSLife_0324 | 0.788 | 0.787 | 0.787 | 1.193 | 1.201 | 1.201 | 1.157 | 1.165 | 1.165 | 0.781 | 0.781 | 0.781 |
NASASOF-WindTunnelTesting_0324 | 0.554 | 0.554 | 0.553 | 0.964 | 0.964 | 0.968 | 0.939 | 0.939 | 0.941 | 0.880 | 0.880 | 0.884 |
NASA-EPAQ_0325 | 0.757 | 0.757 | 0.757 | 1.330 | 1.330 | 1.330 | 1.335 | 1.335 | 1.335 | 0.792 | 0.792 | 0.792 |
NASASF-FOT_0325 | 0.952 | 0.951 | 0.951 | 1.628 | 1.647 | 1.647 | 1.640 | 1.663 | 1.663 | 0.727 | 0.727 | 0.727 |
Average (differences from original) | 0.765 | 0.765 (0.000) | 0.765 (0.000) | 1.254 | 1.260 (0.006) | 1.261 (0.007) | 1.226 | 1.233 (0.007) | 1.234 (0.008) | 0.804 | 0.803 (−0.001) | 0.804 (0.000) |
Selected Clipping Points | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
I2GEC [13] | MGEC4 [14] | MGEC16 [14] | Gaussian [17] | |||||||||
Thresholds | 0 | 15,000 | 30,000 | 0 | 15,000 | 30,000 | 0 | 15,000 | 30,000 | 0 | 15,000 | 3000 |
NASASOF-WindTunnelTesting_100 | 131 | 131 | 131 | 194 | 194 | 194 | 170 | 170 | 170 | 75 | 75 | 75 |
NASASF-ISSLife_0324 | 133 | 133 | 133 | 196 | 196 | 196 | 182 | 182 | 182 | 90 | 90 | 90 |
NASASOF-WindTunnelTesting_0324 | 103 | 103 | 102 | 166 | 166 | 166 | 154 | 154 | 153 | 70 | 70 | 70 |
NASA-EPAQ_0325 | 129 | 129 | 129 | 216 | 216 | 216 | 204 | 204 | 204 | 107 | 107 | 107 |
NASASF-FOT_0325 | 154 | 154 | 154 | 215 | 215 | 215 | 207 | 207 | 207 | 95 | 95 | 95 |
Average | 130 | 130 | 130 | 197 | 197 | 197 | 183 | 183 | 183 | 87 | 87 | 87 |
References
- Luis, Á.; Casares, P.; Cuadrado-Gallego, J.J.; Patricio, M.A. PSON: A Serialization Format for IoT Sensor Networks. Sensors 2021, 21, 4559. [Google Scholar] [CrossRef] [PubMed]
- Kokert, J.; Reindl, L.M.; Rupitsch, S.J. Behavioral Modeling of DC/DC Converters in Self-Powered Sensor Systems with Modelica. Sensors 2021, 21, 4599. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-L.; Tsai, H.-J.; Lin, T.-L.; Lee, H.-Y. Block-Based Content Adaptive Backlight Controller VLSI Design for Local Dimming LCDs. In Proceedings of the 2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), Kyoto, Japan, 6–8 July 2016; pp. 63–66. [Google Scholar]
- Gao, Z.; Ning, H.; Yao, R.; Xu, W.; Zou, W.; Guo, C.; Luo, D.; Xu, H.; Xiao, J. Mini-LED Backlight Technology Progress for Liquid Crystal Display. Crystals 2022, 12, 313. [Google Scholar] [CrossRef]
- Chen, C.-C.; Qiu, Y.-Y.; Zheng, W.-W.; Yu, G.; Chiu, C.-Y.; Zhao, B.; Zhang, X. 17-4: Evaluate and Upgrade Picture Quality of Local Dimming Mini-LED LCD. In SID Symposium Digest of Technical Papers; Wiley-Blackwell: Hoboken, NJ, USA, 2020; pp. 235–238. [Google Scholar]
- Lai, C.-C.; Tsai, C.-C. Backlight Power Reduction and Image Contrast Enhancement Using Adaptive Dimming for Global Backlight Applications. IEEE Trans. Consum. Electron. 2008, 54, 669–674. [Google Scholar] [CrossRef]
- Deng, M.-Y.; Hsiang, E.-L.; Yang, Q.; Tsai, C.-L.; Chen, B.-S.; Wu, C.-E.; Lee, M.-H.; Wu, S.-T.; Lin, C.-L. Reducing Power Consumption of Active-Matrix Mini-LED Backlit LCDs by Driving Circuit. IEEE Trans. Electron. Devices 2021, 68, 2347–2354. [Google Scholar] [CrossRef]
- Tan, G.; Huang, Y.; Li, M.-C.; Lee, S.-L.; Wu, S.-T. High dynamic range liquid crystal displays with a mini-LED backlight. Opt. Express 2018, 26, 16572–16584. [Google Scholar] [CrossRef]
- Oh, W.-S.; Cho, D.; Cho, K.-M.; Moon, G.-W.; Yang, B.; Jang, T. A Novel Two-Dimensional Adaptive Dimming Technique of X-Y Channel Drivers for LED Backlight System in LCD TVs. J. Disp. Technol. 2009, 5, 20–26. [Google Scholar] [CrossRef]
- Katic, N.; Popovic, V.; Cojbasic, R.; Schmid, A.; Leblebici, Y. A Relative Imaging CMOS Image Sensor for High Dynamic Range and High Frame-Rate Machine Vision Imaging Applications. IEEE Sens. J. 2015, 15, 4121–4129. [Google Scholar] [CrossRef]
- Yamagiwa, S.; Ichinomiya, Y. Stream-Based Visually Lossless Data Compression Applying Variable Bit-Length ADPCM Encoding. Sensors 2021, 21, 4602. [Google Scholar] [CrossRef]
- Cho, D.; Oh, W.-S.; Moon, G.W. A Novel Adaptive Dimming LED Backlight System With Current Compensated X-Y Channel Drivers for LCD TVs. J. Disp. Technol. 2011, 7, 29–35. [Google Scholar] [CrossRef]
- Kang, S.; Kim, Y.H. Image Integrity-Based Gray-Level Error Control for Low Power Liquid Crystal Displays. IEEE Trans. Consum. Electron. 2009, 55, 2401–2406. [Google Scholar] [CrossRef]
- Kang, S.-J.; Kim, Y.H. Multi-Histogram-Based Backlight Dimming for Low Power Liquid Crystal Displays. J. Disp. Technol. 2011, 7, 544–549. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.-J. SSIM Preservation-Based Backlight Dimming. J. Disp. Technol. 2014, 10, 247–250. [Google Scholar] [CrossRef]
- Chen, S.-L.; Tsai, H.-J. A Novel Adaptive Local Dimming Backlight Control Chip Design Based on Gaussian Distribution for Liquid Crystal Displays. J. Disp. Technol. 2016, 12, 1494–1505. [Google Scholar] [CrossRef]
- Kim, S.-C.; Cho, Y.-S. Predictive System Implementation to Improve the Accuracy of Urine Self-Diagnosis with Smartphones: Application of a Confusion Matrix-Based Learning Model through RGB Semiquantitative Analysis. Sensors 2022, 22, 5445. [Google Scholar] [CrossRef]
- Chen, S.-L.; Zhou, H.-S.; Chen, T.-Y.; Lee, T.-H.; Chen, C.-A.; Lin, T.-L.; Lin, N.-H.; Wang, L.-H.; Lin, S.-Y.; Chiang, W.-Y.; et al. Dental Shade Matching Method Based on Hue, Saturation, Value Color Model with Machine Learning and Fuzzy Decision. Sens. Mater. 2020, 32, 3185–3207. [Google Scholar] [CrossRef]
- Pei, S.-C.; Shen, C.-T. Color Enhancement With Adaptive Illumination Estimation for Low-Backlighted Displays. IEEE Trans. Multimed. 2017, 19, 1956–1961. [Google Scholar] [CrossRef]
- Choi, D.Y.; Song, B.C. Power-Constrained Image Enhancement Using Multiband Processing for TFT LCD Devices with an Edge LED Backlight Unit. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 1445–1456. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, F.; Wu, D.; Gao, G. Infrared and Visible Image Fusion Method Using Salience Detection and Convolutional Neural Network. Sensors 2022, 22, 5430. [Google Scholar] [CrossRef]
- Huo, F.; Zhu, X.; Zeng, H.; Liu, Q.; Qiu, J. Fast Fusion-Based Dehazing With Histogram Modification and Improved Atmospheric Illumination Prior. IEEE Sens. J. 2021, 21, 5259–5270. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, X.; Pan, X.; Li, X.; Lei, Z. Optimal Local Dimming Based on an Improved Shuffled Frog Leaping Algorithm. IEEE Access 2018, 6, 40472–40484. [Google Scholar] [CrossRef]
- Zhou, Y.; Xiang, W.; Wang, G. Frame Loss Concealment for Multiview Video Transmission Over Wireless Multimedia Sensor Networks. IEEE Sens. J. 2015, 15, 1892–1901. [Google Scholar] [CrossRef]
- Lin, T.-L.; Tseng, H.-W.; Wen, Y.; Lai, F.-W.; Lin, C.-H.; Wang, C.-J. Reconstruction Algorithm for Lost Frame of Multiview Videos in Wireless Multimedia Sensor Network Based on Deep Learning Multilayer Perceptron Regression. IEEE Sens. J. 2018, 18, 9792–9801. [Google Scholar] [CrossRef]
- Iranli, A.; Pedram, M. DTM: Dynamic Tone Mapping for Backlight Scaling. In Proceedings of the 42nd Design Automation Conference, Anaheim, CA, USA, 13–17 June 2005; pp. 612–616. [Google Scholar]
- Richardson, I.E. The H.264 Advanced Video Compression Standard, 2nd ed.; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
Clipping Points | Power (Watt) |
---|---|
255 | 2.6200 |
200 | 1.3001 |
150 | 0.9157 |
100 | 0.5314 |
50 | 0.1471 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-L.; Chen, T.-Y.; Lin, T.-L.; Chen, C.-A.; Lin, S.-Y.; Chiang, Y.-L.; Tung, K.-H.; Chiang, W.-Y. Fast Control for Backlight Power-Saving Algorithm Using Motion Vectors from the Decoded Video Stream. Sensors 2022, 22, 7170. https://doi.org/10.3390/s22197170
Chen S-L, Chen T-Y, Lin T-L, Chen C-A, Lin S-Y, Chiang Y-L, Tung K-H, Chiang W-Y. Fast Control for Backlight Power-Saving Algorithm Using Motion Vectors from the Decoded Video Stream. Sensors. 2022; 22(19):7170. https://doi.org/10.3390/s22197170
Chicago/Turabian StyleChen, Shih-Lun, Tsung-Yi Chen, Ting-Lan Lin, Chiung-An Chen, Szu-Yin Lin, Yu-Liang Chiang, Kun-Hsien Tung, and Wei-Yuan Chiang. 2022. "Fast Control for Backlight Power-Saving Algorithm Using Motion Vectors from the Decoded Video Stream" Sensors 22, no. 19: 7170. https://doi.org/10.3390/s22197170
APA StyleChen, S.-L., Chen, T.-Y., Lin, T.-L., Chen, C.-A., Lin, S.-Y., Chiang, Y.-L., Tung, K.-H., & Chiang, W.-Y. (2022). Fast Control for Backlight Power-Saving Algorithm Using Motion Vectors from the Decoded Video Stream. Sensors, 22(19), 7170. https://doi.org/10.3390/s22197170