Detection of Water Spread Area Changes in Eutrophic Lake Using Landsat Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.3. Water Body Extraction
2.4. Accuracy Analysis
2.5. Trend Analysis
3. Results
3.1. Comparison of Different Band Ratios for Accurate Water Spread Mapping
3.2. Seasonal Fluctuation in Water Spread Area Using NDWI
3.3. Trend and Spatio-Temporal Variability in Water Spread Area
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ridd, M.K.; Liu, J. A Comparison of Four Algorithms for Change Detection in an Urban Environment. Remote Sens. Environ. 1998, 63, 95–100. [Google Scholar] [CrossRef]
- Williamson, C.E.; Saros, J.E.; Vincent, W.F.; Smol, J.P. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol. Oceanogr. 2009, 54, 2273–2282. [Google Scholar] [CrossRef]
- Yamazaki, D.; Trigg, M.A.; Ikeshima, D. Development of a global ~90m water body map using multi-temporal Landsat images. Remote Sens. Environ. 2015, 171, 337–351. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.; Chen, X.; Cai, X.; Tian, L.; Gan, W. Assessment of inundation changes of Poyang Lake using MODIS ob-servations between 2000 and 2010. Remote Sens. Environ. 2012, 121, 80–92. [Google Scholar] [CrossRef]
- Jiang, H.; Feng, M.; Zhu, Y.; Lu, N.; Huang, J.; Xiao, T. An Automated Method for Extracting Rivers and Lakes from Landsat Imagery. Remote Sens. 2014, 6, 5067–5089. [Google Scholar] [CrossRef]
- Klein, I.; Dietz, A.; Gessner, U.; Dech, S.; Kuenzer, C. Results of the Global WaterPack: A novel product to assess inland water body dynamics on a daily basis. Remote Sens. Lett. 2015, 6, 78–87. [Google Scholar] [CrossRef]
- Lu, S.; Wu, B.; Yan, N.; Wang, H. Water body mapping method with HJ-1A/B satellite imagery. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 428–434. [Google Scholar] [CrossRef]
- Ko, B.C.; Kim, H.H.; Nam, J.Y. Classification of Potential Water Bodies Using Landsat 8 OLI and a Combination of Two Boosted Random Forest Classifiers. Sensors 2015, 15, 13763–13777. [Google Scholar] [CrossRef]
- Malahlela, O.E. Inland waterbody mapping: Towards improving discrimination and extraction of inland surface water fea-tures. Int. J. Remote Sens. 2016, 37, 4574–4589. [Google Scholar] [CrossRef]
- Kaplan, G.; Avdan, U. Object-based water body extraction model using Sentinel-2 satellite imagery. Eur. J. Remote Sens. 2017, 50, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Tulbure, M.G.; Broich, M. Spatiotemporal dynamic of surface water bodies using Landsat time-series data from 1999 to 2011. ISPRS J. Photogramm. Remote Sens. 2013, 79, 44–52. [Google Scholar] [CrossRef]
- Sivanpillai, R.; Miller, S.N. Improvements in mapping water bodies using ASTER data. Ecol. Inform. 2010, 5, 73–78. [Google Scholar] [CrossRef]
- Sethre, P.R.; Rundquist, B.C.; Todhunter, P.E. Remote Detection of Prairie Pothole Ponds in the Devils Lake Basin, North Dakota. GIScience Remote Sens. 2005, 42, 277–296. [Google Scholar] [CrossRef]
- Leavesley, S.J.; Annamdevula, N.; Boni, J.; Stocker, S.; Grant, K.; Troyanovsky, B.; Rich, T.; Alvarez, D.F. Hyperspectral im-aging microscopy for identification and quantitative analysis of fluorescently-labeled cells in highly autofluorescent tissue. J. Biophotonics. 2012, 5, 67–84. [Google Scholar] [CrossRef] [PubMed]
- Work, E.A.; Gilmer, D.S. Utilization of satellite data for inventorying prairie ponds and lakes, Photogramm. Eng. Remote Sens. 1976, 42, 685–694. [Google Scholar]
- Li, Y.; Gong, X.; Guo, Z.; Xu, K.; Hu, D.; Zhou, H. An index and approach for water extraction using Landsat–OLI data. Int. J. Remote Sens. 2016, 37, 3611–3635. [Google Scholar] [CrossRef]
- Zhang, A.; Zhang, S.; Sun, G.; Li, F.; Fu, H.; Zhao, Y.; Huang, H.; Cheng, J.; Wang, Z. Mapping of Coastal Cities Using Optimized Spectral–Spatial Features Based Multi-Scale Superpixel Classification. Remote Sens. 2019, 11, 998. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Rokni, K.; Ahmad, A.; Selamat, A.; Hazini, S. Water Feature Extraction and Change Detection Using Multitemporal Landsat Imagery. Remote Sens. 2014, 6, 4173–4189. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Baig MH, A.; Zhang, L.; Jiang, H.; Ji, Y.; Zhao, H.; Tian, J. A simple enhanced water index (EWI) for present surface water estimation using Landsat data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 9097. [Google Scholar] [CrossRef]
- Deoli, V.; Kumar, D. Remote Sensing and GIS Approach for Spatiotemporal Mapping of Ramganga Reservoir. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 775–783. [Google Scholar] [CrossRef]
- Ouma, Y.O.; Tateishi, R. A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: An em-pirical analysis using Landsat TM and ETM+ data. Int. J. Remote Sens. 2006, 27, 3153–3181. [Google Scholar] [CrossRef]
- Haibo, Y.; Zongmin, W.; Hongling, Z.; Yu, G. Water Body Extraction Methods Study Based on RS and GIS. Procedia Environ. Sci. 2011, 10, 2619–2624. [Google Scholar] [CrossRef]
- Tang, Z.; Ou, W.; Dai, Y.; Xin, Y. Extraction of Water Body Based on LandSat TM5 Imagery—A Case Study in the Yangtze River. In International Conference on Computer and Computing Technologies in Agriculture; Springer: Berlin/Heidelberg, Germany, 2012; pp. 416–420. [Google Scholar] [CrossRef]
- Zhai, K.; Wu, X.; Qin, Y.; Du, P. Comparison of surface water extraction performances of different classic water indices using OLI and TM imageries in different situations. Geo-Spat. Inf. Sci. 2015, 18, 32–42. [Google Scholar] [CrossRef]
- Elsahabi, M.; Negmb, A.; Ali, K. Performances Evaluation of Water Body Extraction Techniques Using Landsat ETM+ Data: Case- Study of Lake Nubia, Sudan. Egypt. J. Eng. Sci. Technol. 2016, 19, 275–281. [Google Scholar] [CrossRef]
- Guo, Q.; Pu, R.; Li, J.; Cheng, J. A weighted normalized difference water index for water extraction using Landsat imagery. Int. J. Remote Sens. 2017, 38, 5430–5445. [Google Scholar] [CrossRef]
- Yang, X.; Chen, L. Evaluation of automated urban surface water extraction from Sentinel-2A imagery using different water indices. J. Appl. Remote Sens. 2017, 11, 026016. [Google Scholar] [CrossRef]
- Rishikeshan, C.A.; Ramesh, H. An automated mathematical morphology driven algorithm for water body extraction from remotely sensed images. ISPRS J. Photogramm. 2018, 146, 11–21. [Google Scholar] [CrossRef]
- Xiao, X.; Xie, J.; Niu, J.; Cao, W. A Novel Image Fusion Method for Water Body Extraction Based on Optimal Band Combi-nation. Trait. Signal. 2020, 37, 195–207. [Google Scholar] [CrossRef]
- Gu, Z.; Zhang, Y.; Fan, H. Mapping inter- and intra-annual dynamics in water surface area of the Tonle Sap Lake with Landsat time-series and water level data. J. Hydrol. 2021, 601, 126644. [Google Scholar] [CrossRef]
- Deliry, S.I.; Avdan, Z.Y.; Do, N.T.; Avdan, U. Assessment of human-induced environmental disaster in the Aral Sea using Landsat satellite images. Environ. Earth Sci. 2020, 79, 1–15. [Google Scholar] [CrossRef]
- Du, Z.; Linghu, B.; Ling, F.; Li, W.; Tian, W.; Wang, H.; Gui, Y.; Sun, B.; Zhang, X. Estimating surface water area changes using time-series Landsat data in the Qingjiang River Basin, China. J. Appl. Remote Sens. 2012, 6, 063609. [Google Scholar] [CrossRef]
- Sarp, G.; Ozcelik, M. Water body extraction and change detection using time series: A case study of Lake Burdur, Turkey. J. Taibah Univ. Sci. 2017, 11, 381–391. [Google Scholar] [CrossRef]
- Wang, J.; Ding, J.; Li, G.; Liang, J.; Yu, D.; Aishan, T.; Zhang, F.; Yang, J.; Abulimiti, A.; Liu, J. Dynamic detection of water surface area of Ebinur Lake using multi-source satellite data (Landsat and Senti-nel-1A) and its responses to changing environment. Catena 2019, 177, 189–201. [Google Scholar] [CrossRef]
- Herndon, K.; Muench, R.; Cherrington, E.; Griffin, R. An Assessment of Surface Water Detection Methods for Water Resource Management in the Nigerien Sahel. Sensors 2020, 20, 431. [Google Scholar] [CrossRef]
- Acharya, T.D.; Yang, I.T.; Subedi, A.; Lee, D.H. Change Detection of Lakes in Pokhara, Nepal Using Landsat Data. Multidiscip. Digit. Publ. Inst. Proc. 2016, 1, 17. [Google Scholar] [CrossRef]
- Babaei, H.; Janalipour, M.; Tehrani, N.A. A simple, robust, and automatic approach to extract water body from Landsat images (case study: Lake Urmia, Iran). J. Water Clim. Chang. 2019, 12, 238–249. [Google Scholar] [CrossRef]
- Cao, H.; Han, L.; Li, L. Changes in extent of open-surface water bodies in China’s Yellow River Basin (2000–2020) using Google Earth Engine cloud platform. Anthropocene 2022, 39, 100346. [Google Scholar] [CrossRef]
- Xing, W.; Guo, B.; Sheng, Y.; Yang, X.; Ji, M.; Xu, Y. Tracing surface water change from 1990 to 2020 in China’s Shandong Province using Landsat series images. Ecol. Indic. 2022, 140, 108993. [Google Scholar] [CrossRef]
- Li, W.; Zhang, W.; Li, Z.; Wang, Y.; Chen, H.; Gao, H.; Zhou, Z.; Hao, J.; Li, C.; Wu, X. A new method for surface water extraction using multi-temporal Landsat 8 images based on maximum entropy model. Eur. J. Remote Sens. 2022, 55, 303–312. [Google Scholar] [CrossRef]
- Dash, R.R.; Mehrotra, I.; Kumar, P.; Grischek, T. Lake bank filtration at Nainital, India: Water-quality evaluation. Appl. Hydrogeol. 2008, 16, 1089–1099. [Google Scholar] [CrossRef]
- Sah, N.; Kumar, M.; Upadhyay, R.; Dutt, S. Hill slope instability of Nainital City, Kumaun Lesser Himalaya, Uttarakhand, India. J. Rock Mech. Geotech. Eng. 2018, 10, 280–289. [Google Scholar] [CrossRef]
- Mann, H.B. Non-parametric tests against trend. Econ. J. Econ. Soc. 1945, 13, 245–259. [Google Scholar]
- Kendall, M.G. Rank correlation methods. Charles Griffin. 1975, 202. [Google Scholar] [CrossRef]
- Neeti, N.; Eastman, J.R. A Contextual Mann-Kendall Approach for the Assessment of Trend Significance in Image Time Series. Trans. GIS 2011, 15, 599–611. [Google Scholar] [CrossRef]
- Mohammad, L.; Mondal, I.; Bandyopadhyay, J.; Pham, Q.B.; Nguyen, X.C.; Dinh, C.D.; Al-Quraishi, A.M.F. Assessment of spatio-temporal trends of satellite-based aerosol optical depth using Mann–Kendall test and Sen’s slope estimator model. Geomat. Nat. Hazards Risk 2022, 13, 1270–1298. [Google Scholar] [CrossRef]
- Pingale, S.M.; Khare, D.; Jat, M.K.; Adamowski, J. Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centers of the arid and semi-arid state of Rajasthan, India. Atmos. Res. 2014, 138, 73–90. [Google Scholar] [CrossRef]
- Kumar, K.S.; Rathnam, E.V. Analysis and Prediction of Groundwater Level Trends Using Four Variations of Mann Kendall Tests and ARIMA Modelling. J. Geol. Soc. India 2019, 94, 281–289. [Google Scholar] [CrossRef]
- Kuriqi, A.; Ali, R.; Pham, Q.B.; Gambini, J.M.; Gupta, V.; Malik, A.; Linh, N.T.T.; Joshi, Y.; Anh, D.T.; Nam, V.T.; et al. Seasonality shift and streamflow flow variability trends in central India. Acta Geophys. 2020, 68, 1461–1475. [Google Scholar] [CrossRef]
- Rana, S.; Deoli, V.; Chavan, S.R. Detection of abrupt change in trends of rainfall and rainy day’s pattern of Uttarakhand. Arab. J. Geosci. 2022, 15, 1–17. [Google Scholar] [CrossRef]
- Abeysingha, N.S.; Singh, M.; Sehgal, V.K.; Khanna, M.; Pathak, H. Analysis of trends in streamflow and its linkages with rainfall and anthropogenic factors in Gomti River basin of North India. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2015, 123, 785–799. [Google Scholar] [CrossRef]
- Longobardi, A.; Villani, P. Trend analysis of annual and seasonal rainfall time series in the Mediterranean area. Int. J. Climatol. 2010, 30, 1538–1546. [Google Scholar] [CrossRef]
- Kisi, O.; Ay, M. Comparison of Mann–Kendall and innovative trend method for water quality parameters of the Kizilirmak River, Turkey. J. Hydrol. 2014, 513, 362–375. [Google Scholar] [CrossRef]
- Acharya, T.D.; Subedi, A.; Huang, H.; Lee, D.H. Application of Water Indices in Surface Water Change Detection Using Landsat Imagery in Nepal. Sens. Mater. 2019, 31, 1429. [Google Scholar] [CrossRef]
- Li, W.; Du, Z.; Ling, F.; Zhou, D.; Wang, H.; Gui, Y.; Sun, B.; Zhang, X. A Comparison of Land Surface Water Mapping Using the Normalized Difference Water Index from TM, ETM+ and ALI. Remote Sens. 2013, 5, 5530–5549. [Google Scholar] [CrossRef]
- Deoli, V.; Kumar, D.; Kumar, M.; Kuriqi, A.; Elbeltagi, A. Water spread mapping of multiple lakes using remote sensing and satellite data. Arab. J. Geosci. 2021, 14, 1–15. [Google Scholar] [CrossRef]
- Elsahabi, M.; Negm, A.; El Tahan, A.H.M. Performances Evaluation of Surface Water Areas Extraction Techniques Using Landsat ETM+ Data: Case Study Aswan High Dam Lake (AHDL). Procedia Technol. 2016, 22, 1205–1212. [Google Scholar] [CrossRef] [Green Version]
- Bijeesh, T.V.; Narasimhamurthy, K.N. A comparative study of spectral indices for surface water delineation using Landsat 8 Images. In Proceedings of the 2019 International Conference on Data Science and Communication (IconDSC), Bangalore, India, 1–2 March 2019; IEEE: Bangalore, India, 2019; pp. 1–5. [Google Scholar]
Band Name | Band Number | Resolution (m) | |
---|---|---|---|
Landsat 7 | Landsat 8 | ||
Deep Blue | - | 1 | 30 |
Blue | 1 | 2 | 30 |
Green | 2 | 3 | 30 |
Red | 3 | 4 | 30 |
Near Infrared (NIR) | 4 | 5 | 30 |
Short-wave Infrared 1 (SWIR 1) | 5 | 6 | 30 |
Short-wave Infrared 2 (SWIR 2) | 7 | 7 | 30 |
Panchromatic | 8 | 8 | 15 |
Cirrus | - | 9 | 30 |
Thermal Infra-Red 1 | 6 | 10 | 30 |
Thermal Infra-Red 2 | 6 | 11 | 30 |
Satellite | Year | Nov–Feb | Mar–Jun | July–Oct |
---|---|---|---|---|
Landsat-7 | 2000–2001 | 21-01-2001 | 27-04-2001 | 18-09-2001 |
2001–2002 | 23-12-2001 | 29-03-2002 | 23-10-2002 | |
2002–2003 | - | 01-04-2003 | - | |
2003–2004 | 27-11-2003 | 05-05-2004 | 28-10-2004 | |
2004–2005 | 15-12-2004 | 09-06-2005 | 15-10-2005 | |
2005–2006 | 04-02-2006 | 12-06-2006 | 2-10-2006 | |
2006–2007 | 06-01-2007 | 28-04-2007 | 21-10-2007 | |
2007–2008 | 10-02-2008 | 30-04-2008 | 23-10-2008 | |
2008–2009 | 27-01-2009 | 17-04-2009 | 10-10-2009 | |
2009–2010 | 30-01-2010 | 04-04-2010 | 29-10-2010 | |
2010–2011 | - | 22-03-2011 | - | |
2011–2012 | 03-12-2011 | 27-05-2012 | 18-10-2012 | |
2012–2013 | 22-01-2013 | 14-05-2013 | - | |
Landsat-8 | 2013–2014 | 16-12-2013 | 10-06-2014 | - |
2014–2015 | 21-02-2015 | 10-04-2015 | 03-10-2015 | |
2015–2016 | 22-12-2015 | 12-04-2016 | 21-10-2016 | |
2016–2017 | 10-02-2017 | 02-06-2017 | 24-10-2017 | |
2017–2018 | 28-01-2018 | 20-05-2018 | 27-10-2018 |
Year | NDWI | MNDWI | WRI |
---|---|---|---|
Area (km2) | Area (km2) | Area (km2) | |
2001–2002 | 0.445 | 0.443 | 0.433 |
2002–2003 | - | - | - |
2003–2004 | 0.440 | 0.411 | 0.427 |
2004–2005 | 0.438 | 0.421 | 0.424 |
2005–2006 | 0.412 | 0.400 | 0.430 |
2006–2007 | 0.423 | 0.422 | 0.416 |
2007–2008 | 0.422 | 0.400 | 0.415 |
2008–2009 | 0.433 | 0.413 | 0.427 |
2009–2010 | 0.446 | 0.403 | 0.415 |
2010–2011 | - | - | - |
2011–2012 | 0.455 | 0.421 | 0.435 |
2012–2013 | 0.443 | 0.415 | 0.449 |
2013–2014 | 0.463 | 0.411 | 0.448 |
2014–2015 | 0.436 | 0.419 | 0.433 |
2015–2016 | 0.464 | 0.410 | 0.422 |
2016–2017 | 0.447 | 0.413 | 0.409 |
2017–2018 | 0.442 | 0.415 | 0.404 |
Year | NDWI | MNDWI | WRI |
---|---|---|---|
Area (km2) | Area (km2) | Area (km2) | |
2001–2002 | 0.428 | 0.400 | 0.421 |
2002–2003 | 0.427 | 0.404 | 0.431 |
2003–2004 | 0.396 | 0.405 | 0.416 |
2004–2005 | 0.432 | 0.403 | 0.428 |
2005–2006 | 0.395 | 0.395 | 0.422 |
2006–2007 | 0.408 | 0.391 | 0.420 |
2007–2008 | 0.387 | 0.387 | 0.401 |
2008–2009 | 0.398 | 0.403 | 0.403 |
2009–2010 | 0.415 | 0.396 | 0.406 |
2010–2011 | 0.451 | 0.415 | 0.445 |
2011–2012 | 0.383 | 0.383 | 0.406 |
2012–2013 | 0.397 | 0.396 | 0.410 |
2013–2014 | 0.421 | 0.410 | 0.408 |
2014–2015 | 0.420 | 0.423 | 0.402 |
2015–2016 | 0.399 | 0.396 | 0.403 |
2016–2017 | 0.401 | 0.403 | 0.393 |
2017–2018 | 0.397 | 0.387 | 0.388 |
Year | NDWI | MNDWI | WRI |
---|---|---|---|
Area (km2) | Area (km2) | Area (km2) | |
2001–2002 | 0.460 | 0.435 | 0.462 |
2002–2003 | - | - | - |
2003–2004 | 0.452 | 0.419 | 0.461 |
2004–2005 | 0.442 | 0.414 | 0.451 |
2005–2006 | 0.465 | 0.405 | 0.479 |
2006–2007 | 0.434 | 0.418 | 0.436 |
2007–2008 | 0.467 | 0.438 | 0.452 |
2008–2009 | 0.460 | 0.449 | 0.445 |
2009–2010 | 0.441 | 0.405 | 0.442 |
2010–2011 | - | - | - |
2011–2012 | 0.445 | 0.415 | 0.440 |
2012–2013 | - | - | - |
2013–2014 | - | - | - |
2014–2015 | 0.438 | 0.427 | 0.425 |
2015–2016 | 0.432 | 0.429 | 0.447 |
2016–2017 | 0.451 | 0.442 | 0.445 |
2017–2018 | 0.463 | 0.442 | 0.451 |
Lake | Using GPS (km2) | Using NDWI (km2) | Using MNDWI (km2) | Using WRI (km2) |
---|---|---|---|---|
Nainital | 0.457 | 0.471 (−3.06% deviation from the surveyed area) | 0.431 (5.69% deviation from the surveyed area) | 0.440 (−3.71% deviation from the surveyed area) |
Station | Duration | Z-Value | Trend |
---|---|---|---|
Nainital | November–February | −1.090 | No |
March–June | −2.818 | Yes (-) * | |
July–October | −2.961 | Yes (-) * |
Station | Season | Trend Magnitude (km2/year) | Change over Study Periods (%) |
---|---|---|---|
Nainital | November–February | −0.00070 | −2.79 |
March–June | −0.00187 | −7.70 | |
July–October | −0.00123 | −4.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deoli, V.; Kumar, D.; Kuriqi, A. Detection of Water Spread Area Changes in Eutrophic Lake Using Landsat Data. Sensors 2022, 22, 6827. https://doi.org/10.3390/s22186827
Deoli V, Kumar D, Kuriqi A. Detection of Water Spread Area Changes in Eutrophic Lake Using Landsat Data. Sensors. 2022; 22(18):6827. https://doi.org/10.3390/s22186827
Chicago/Turabian StyleDeoli, Vaibhav, Deepak Kumar, and Alban Kuriqi. 2022. "Detection of Water Spread Area Changes in Eutrophic Lake Using Landsat Data" Sensors 22, no. 18: 6827. https://doi.org/10.3390/s22186827