Coplanar Meta-Surface-Based Substrate-Integrated Waveguide Antennas with Broadband and Low Reflections for K-Band Beam Scanning
Abstract
:1. Introduction
2. Meta-Surface-Based SIW Component Design and Analysis
2.1. Unit Cell Design
2.2. SIW Topology
2.3. Full-Wave Simulations
2.4. Extended SIW Design and Simulations
3. Discussion of Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, K. Integration and Interconnect Techniques of Planar and Non-Planar Structures for Microwave and Millimeter-Wave Circuits-Current Status and Future Trend. In Proceedings of the 2001 Asia-Pacific Microwave Conference, Taipei, Taiwan, 3–6 December 2001; pp. 411–416. [Google Scholar]
- Kuznetcov, M.V.; Buendía, V.G.-G.; Shafiq, Z.; Matekovits, L.; Anagnostou, D.E.; Podilchak, S.K. Printed Leaky-Wave Antenna with Aperture Control Using Width-Modulated Microstrip Lines and Tm Surface-Wave Feeding by Siw Technology. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1809–1813. [Google Scholar] [CrossRef]
- Zerfaine, A.; Djerafi, T. Ultrabroadband Circularly Polarized Antenna Array Based on Microstrip to Siw Junction. IEEE Trans. Antennas Propag. 2021, 70, 2346–2351. [Google Scholar] [CrossRef]
- Ballesteros, J.A.; Belenguer, A.; Fernandez, M.D.; González, H.E.; Boria, V.E. Improved Microstrip-to-Esiw Transition with Elliptical Dielectric Taper in Ku-and Ka-Bands. IEEE Access 2022, 10, 51412–51418. [Google Scholar] [CrossRef]
- Gheisanab, H.N.; Pourmohammadi, P.; Iqbal, A.; Kishk, A.; Denidni, T.A. Siw-Based Self-Quadruplexing Antenna for Microwave and Mm-Wave Frequencies. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 1482–1486. [Google Scholar]
- Guo, Y.J.; Ziolkowski, R.W. Advanced Antenna Array Engineering for 6G and Beyond Wireless Communications; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Spurek, J.; Raida, Z. Siw-Based Circularly Polarized Antenna Array for 60 GHz 5g Band: Feasibility Study. Sensors 2022, 22, 2945. [Google Scholar] [CrossRef]
- Dam, T.H.L.; Houzet, G.; Lacrevaz, T.; Vuong, T.P. High Gain Vivaldi Antenna from 26 up to 40 GHz for 5g Applications. Microw. Opt. Technol. Lett. 2022, 64, 1267–1271. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Imani, M.F.; Gollub, J.N.; Yurduseven, O.; Diebold, A.V.; Boyarsky, M.; Fromenteze, T.; Pulido-Mancera, L.; Sleasman, T.; Smith, D.R. Review of Metasurface Antennas for Computational Microwave Imaging. IEEE Trans. Antennas Propag. 2020, 68, 1860–1875. [Google Scholar] [CrossRef] [Green Version]
- Iyer, A.K.; Alu, A.; Epstein, A. Metamaterials and Metasurfaces—Historical Context, Recent Advances, and Future Directions. IEEE Trans. Antennas Propag. 2020, 68, 1223–1231. [Google Scholar] [CrossRef]
- Abadal, S.; Cui, T.-J.; Low, T.; Georgiou, J. Programmable Metamaterials for Software-Defined Electromagnetic Control: Circuits, Systems, and Architectures. IEEE J. Emerg. Sel. Top. Circuits Syst. 2020, 10, 6–19. [Google Scholar] [CrossRef]
- Asadchy, V.S.; Albooyeh, M.; Tcvetkova, S.N.; Díaz-Rubio, A.; Ra’di, Y.; Tretyakov, S. Perfect Control of Reflection and Refraction Using Spatially Dispersive Metasurfaces. Phys. Rev. B 2016, 94, 075142. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Rubio, A.; Asadchy, V.S.; Elsakka, A.; Tretyakov, S.A. From the Generalized Reflection Law to the Realization of Perfect Anomalous Reflectors. Sci. Adv. 2017, 3, e1602714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arbabi, A.; Arbabi, E.; Horie, Y.; Kamali, S.M.; Faraon, A. Planar Metasurface Retroreflector. Nat. Photonics 2017, 11, 415–420. [Google Scholar] [CrossRef] [Green Version]
- Kan, Y.; Yang, R.; Zhang, A.; Lei, Z.; Jiao, Y.; Li, J. Meta-Surface Cavity-Based Waveguide Slot Array for Dual-Circularly Polarized Dual Beam. IEEE Trans. Antennas Propag. 2021, 70, 3894–3898. [Google Scholar] [CrossRef]
- Williams, R.J.; Gjonbalaj, A.M.; Green, K.D.; Wells, B.M. Generation of Arbitrarily Directed Split Beams with a Reflective Metasurface. Opt. Express 2022, 30, 25318–25325. [Google Scholar] [CrossRef]
- Oh, T.; Cho, C.; Ahn, W.; Yook, J.-G.; Lee, J.; You, S.; Yim, J.; Ha, J.; Bae, G.; You, H.-C. Plasma Generator with Dielectric Rim and Fss Electrode for Enhanced Rcs Reduction Effect. Sensors 2021, 21, 8486. [Google Scholar] [CrossRef]
- Alwareth, H.; Ibrahim, I.M.; Zakaria, Z.; Al-Gburi, A.J.A.; Ahmed, S.; Nasser, Z.A. A Wideband High-Gain Microstrip Array Antenna Integrated with Frequency-Selective Surface for Sub-6 GHz 5g Applications. Micromachines 2022, 13, 1215. [Google Scholar] [CrossRef]
- Chen, M.; Abdo-Sánchez, E.; Epstein, A.; Eleftheriades, G.V. Theory, Design, and Experimental Verification of a Reflectionless Bianisotropic Huygens’ Metasurface for Wide-Angle Refraction. Phys. Rev. B 2018, 97, 125433. [Google Scholar] [CrossRef] [Green Version]
- Cerveny, M.; Ford, K.L.; Tennant, A. Reflective Switchable Polarization Rotator Based on Metasurface with Pin Diodes. IEEE Trans. Antennas Propag. 2020, 69, 1483–1492. [Google Scholar] [CrossRef]
- Pitilakis, A.; Tsilipakos, O.; Liu, F.; Kossifos, K.M.; Tasolamprou, A.C.; Kwon, D.-H.; Mirmoosa, M.S.; Manessis, D.; Kantartzis, N.V.; Liaskos, C. A Multi-Functional Reconfigurable Metasurface: Electromagnetic Design Accounting for Fabrication Aspects. IEEE Trans. Antennas Propag. 2020, 69, 1440–1454. [Google Scholar] [CrossRef]
- Zetterstrom, O.; Hamarneh, R.; Quevedo-Teruel, O. Experimental Validation of a Metasurface Luneburg Lens Antenna Implemented with Glide-Symmetric Substrate-Integrated Holes. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 698–702. [Google Scholar] [CrossRef]
- Nitas, M.; Passia, M.T.; Yioultsis, T.V. Fully Planar Slow-Wave Substrate Integrated Waveguide Based on Broadside-Coupled Complementary Split Ring Resonators for Mmwave and 5g Components. IET Microwaves Antennas Propag. 2020, 14, 1096–1107. [Google Scholar] [CrossRef]
- Martinez-Ros, A.J.; Gómez-Tornero, J.L.; Goussetis, G. Holographic Pattern Synthesis with Modulated Substrate Integrated Waveguide Line-Source Leaky-Wave Antennas. IEEE Trans. Antennas Propag. 2013, 61, 3466–3474. [Google Scholar] [CrossRef]
- Cameron, T.R.; Eleftheriades, G.V. Experimental Validation of a Wideband Metasurface for Wide-Angle Scanning Leaky-Wave Antennas. IEEE Trans. Antennas Propag. 2017, 65, 5245–5256. [Google Scholar] [CrossRef]
- Li, T.; Chen, Z.N. Wideband Substrate-Integrated Waveguide-Fed Endfire Metasurface Antenna Array. IEEE Trans. Antennas Propag. 2018, 66, 7032–7040. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Virdee, B.S.; Althuwayb, A.A.; Aïssa, S.; See, C.H.; Abd-Alhameed, R.A.; Falcone, F.; Limiti, E. Study on on-Chip Antenna Design Based on Metamaterial-Inspired and Substrate-Integrated Waveguide Properties for Millimetre-Wave and Thz Integrated-Circuit Applications. J. Infrared Millim. Terahertz Waves 2021, 42, 17–28. [Google Scholar] [CrossRef]
- Boyarsky, M.; Sleasman, T.; Imani, M.F.; Gollub, J.N.; Smith, D.R. Electronically Steered Metasurface Antenna. Sci. Rep. 2021, 11, 4693. [Google Scholar] [CrossRef]
- Marques, R.; Martel, J.; Mesa, F.; Medina, F. A New 2d Isotropic Left-Handed Metamaterial Design: Theory and Experiment. Microw. Opt. Technol. Lett. 2002, 35, 405–408. [Google Scholar] [CrossRef]
- Solymar, L.; Shamonina, E. Waves in Metamaterials; Oxford University Press: New York, NY, USA, 2009. [Google Scholar]
- Brillouin, L. Wave Propagation in Periodic Structures; Dover: New York, NY, USA, 1953. [Google Scholar]
- Chan, C. Frequency Selective Surface and Grid Array; John Wiley & Sons: New York, NY, USA, 1995. [Google Scholar]
- Tretyakov, S. Analytical Modeling in Applied Electromagnetics; Artech House: Norwood, MA, USA, 2003. [Google Scholar]
- Holloway, C.L.; Kuester, E.F.; Gordon, J.A.; O’Hara, J.; Booth, J.; Smith, D.R. An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials. IEEE Antennas Propag. Mag. 2012, 54, 10–35. [Google Scholar] [CrossRef]
- Pendry, J.B.; Holden, A.J.; Robbins, D.J.; Stewart, W. Magnetism from Conductors and Enhanced Nonlinear Phenomena. IEEE Trans. Microw. Theory Technol. 1999, 47, 2075–2084. [Google Scholar] [CrossRef] [Green Version]
- Marqués, R.; Medina, F.; Rafii-El-Idrissi, R. Role of Bianisotropy in Negative Permeability and Left-Handed Metamaterials. Phys. Rev. B 2002, 65, 144440. [Google Scholar] [CrossRef]
- Baena, J.D.; Bonache, J.; Martín, F.; Sillero, R.M.; Falcone, F.; Lopetegi, T.; Laso, M.A.; Garcia-Garcia, J.; Gil, I.; Portillo, M.F. Equivalent-Circuit Models for Split-Ring Resonators and Complementary Split-Ring Resonators Coupled to Planar Transmission Lines. IEEE Trans. Microw. Theory Technol. 2005, 53, 1451–1461. [Google Scholar] [CrossRef]
- Falcone, F.; Lopetegi, T.; Baena, J.D.; Marqués, R.; Martín, F.; Sorolla, M. Effective Negative-ε Stopband Microstrip Lines Based on Complementary Split Ring Resonators. IEEE Microw. Wirel. Compon. Lett. 2004, 14, 280–282. [Google Scholar] [CrossRef]
- Bonache, J.; Gil, M.; Gil, I.; García-García, J.; Martín, F. On the Electrical Characteristics of Complementary Metamaterial Resonators. IEEE Microw. Wirel. Compon. Lett. 2006, 16, 543–545. [Google Scholar] [CrossRef]
- Bonache, J.; Gil, I.; Garcia-Garcia, J.; Martin, F. Complementary Split Rings Resonators (Csrrs): Towards the Miniaturization of Microwave Device Design. J. Comput. Electron. 2006, 5, 193–197. [Google Scholar] [CrossRef]
- Aznar, F.; Vélez, A.; Durán-Sindreu, M.; Bonache, J.; Martín, F. Open Complementary Split Ring Resonators: Physics, Modelling, and Analysis. Microw. Opt. Technol. Lett. 2010, 52, 1520–1526. [Google Scholar] [CrossRef]
- Marqués, R.; Mesa, F.; Martel, J.; Medina, F. Comparative Analysis of Edge-and Broadside-Coupled Split Ring Resonators for Metamaterial Design-Theory and Experiments. IEEE Trans. Antennas Propag. 2003, 51, 2572–2581. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Qu, S.; Zhang, J.; Ma, H.; Yang, Y.; Gu, C.; Wu, X.; Xu, Z. A Tunable Left-Handed Metamaterial Based on Modified Broadside-Coupled Split-Ring Resonators. Prog. Electromagn. Res. Lett. 2009, 6, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Bahl, I.; Bhartia, P. Microwave Solid State Circuit Design; John Wiley & Sons: New York, NY, USA, 2003. [Google Scholar]
- Wheeler, H.A. Formulas for the Skin Effect. Proc. IRE 1942, 30, 412–424. [Google Scholar] [CrossRef]
- Nitas, M.; Yioultsis, T.V. Characterization of Edge-Coupled Broadside-Coupled and Complementary Split-Ring Resonator Periodic Media Based on Numerical Solutions of Eigenvalue Problems. IEEE Trans. Microw. Theory Technol. 2021, 69, 5259–5269. [Google Scholar] [CrossRef]
- Smith, D.; Schultz, S.; Markoš, P.; Soukoulis, C. Determination of Effective Permittivity and Permeability of Metamaterials from Reflection and Transmission Coefficients. Phys. Rev. B 2002, 65, 195104. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.; Vier, D.; Koschny, T.; Soukoulis, C. Electromagnetic Parameter Retrieval from Inhomogeneous Metamaterials. Phys. Rev. E 2005, 71, 036617. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Wu, K. Guided-Wave and Leakage Characteristics of Substrate Integrated Waveguide. IEEE Trans. Microw. Theory Technol. 2005, 53, 66–73. [Google Scholar]
- Hao, Z.-C.; Hong, W.; Chen, J.X.; Chen, X.P.; Wu, K. Planar Diplexer for Microwave Integrated Circuits. IEE Proc.-Microw. Antennas Propag. 2005, 152, 455–459. [Google Scholar] [CrossRef]
- Deslandes, D. Design Equations for Tapered Microstrip-to-Substrate Integrated Waveguide Transitions. In Proceedings of the 2010 IEEE MTT-S International Microwave Symposium, Anaheim, CA, USA, 23–28 May 2010; pp. 704–707. [Google Scholar]
- Pozar, D.M. Microwave Engineering; John Wiley & Sons: New York, NY, USA, 2011. [Google Scholar]
- Hessel, A. General Characteristics of Traveling-Wave Antennas, in Antenna Theory, Part 2; McGraw-Hill: New York, NY, USA, 1969. [Google Scholar]
- Podilchak, S.K.; Matekovits, L.; Freundorfer, A.P.; Antar, Y.M.; Orefice, M. Controlled Leaky-Wave Radiation from a Planar Configuration of Width-Modulated Microstrip Lines. IEEE Trans. Antennas Propag. 2013, 61, 4957–4972. [Google Scholar] [CrossRef]
- Martinez-Ros, A.J.; Gómez-Tornero, J.L.; Losada, V.; Mesa, F.; Medina, F. Non-Uniform Sinusoidally Modulated Half-Mode Leaky-Wave Lines for near-Field Focusing Pattern Synthesis. IEEE Trans. Antennas Propag. 2014, 63, 1022–1031. [Google Scholar] [CrossRef]
- Guan, D.-F.; Zhang, Q.; You, P.; Yang, Z.-B.; Zhou, Y.; Yong, S.-W. Scanning Rate Enhancement of Leaky-Wave Antennas Using Slow-Wave Substrate Integrated Waveguide Structure. IEEE Trans. Antennas Propag. 2018, 66, 3747–3751. [Google Scholar] [CrossRef]
- Mohtashami, Y.; Rashed-Mohassel, J. A Butterfly Substrate Integrated Waveguide Leaky-Wave Antenna. IEEE Trans. Antennas Propag. 2014, 62, 3384–3388. [Google Scholar] [CrossRef]
- Jackson, D.R.; Caloz, C.; Itoh, T. Leaky-Wave Antennas. Proc. IEEE 2012, 100, 2194–2206. [Google Scholar] [CrossRef]
- Ghiotto, A.; Parment, F.; Vuong, T.-P.; Wu, K. Millimeter-Wave Air-Filled Siw Antipodal Linearly Tapered Slot Antenna. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 768–771. [Google Scholar] [CrossRef]
- Liu, J.; Jackson, D.R.; Long, Y. Substrate Integrated Waveguide (Siw) Leaky-Wave Antenna with Transverse Slots. IEEE Trans. Antennas Propag. 2011, 60, 20–29. [Google Scholar] [CrossRef]
- Araghi, A.; Khalily, M.; Xiao, P.; Tafazolli, R.; Jackson, D.R. Long Slot Mmwave Low-Sll Periodic-Modulated Leaky-Wave Antenna Based on Empty Siw. IEEE Trans. Antennas Propag. 2021, 70, 1857–1868. [Google Scholar] [CrossRef]
- Zarifi, D.; Farahbakhsh, A.; Zaman, A.U.; Kildal, P.-S. Design and Fabrication of a High-Gain 60-Ghz Corrugated Slot Antenna Array with Ridge Gap Waveguide Distribution Layer. IEEE Trans. Antennas Propag. 2016, 64, 2905–2913. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Ng, K.B.; Chan, C.H.; Luk, K.-M. Substrate-Integrated-Waveguide-Fed Array Antenna Covering 57–71 GHz Band for 5g Applications. IEEE Trans. Antennas Propag. 2017, 65, 6298–6306. [Google Scholar] [CrossRef]
- Park, J.; Seong, H.; Whang, Y.N.; Hong, W. Energy-Efficient 5g Phased Arrays Incorporating Vertically Polarized Endfire Planar Folded Slot Antenna for Mmwave Mobile Terminals. IEEE Trans. Antennas Propag. 2019, 68, 230–241. [Google Scholar] [CrossRef]
- Li, Y.; Luk, K.-M. Low-Cost High-Gain and Broadband Substrate-Integrated-Waveguide-Fed Patch Antenna Array for 60-Ghz Band. IEEE Trans. Antennas Propag. 2014, 62, 5531–5538. [Google Scholar] [CrossRef]
- Jiang, M.; Hong, W.; Zhang, Y.; Yu, S.; Zhou, H. A Folded Reflectarray Antenna with a Planar Siw Slot Array Antenna as the Primary Source. IEEE Trans. Antennas Propag. 2014, 62, 3575–3583. [Google Scholar] [CrossRef]
- Xu, H.-X.; Cai, T.; Zhuang, Y.-Q.; Peng, Q.; Wang, G.-M.; Liang, J.-G. Dual-Mode Transmissive Metasurface and Its Applications in Multibeam Transmitarray. IEEE Trans. Antennas Propag. 2017, 65, 1797–1806. [Google Scholar] [CrossRef]
Basic Meta-Surface-Based Design | Extended Meta-Surface-Based Design | |||
---|---|---|---|---|
Figure 2, Figure 3 and Figure 4 | Figure 5 | |||
Transmission line | Rhombus row | Hexagon row | Rhombus–hexagon rows | Hexagon-rhombus rows |
Antenna | Rhombus row | Hexagon row | Rhombus–hexagon rows | Hexagon–rhombus rows |
(Trapezoid enabled) | (Trapezoid enabled) | (Trapezoid enabled) | (Trapezoid enabled) |
Radiation Performance | Rhombus–Hexagon Meta-Surface-Based SIW Antenna | Hexagon–Rhombus Meta-Surface-Based SIW Antenna |
---|---|---|
3-dB beamwidth on E-plane | ||
3-dB beamwidth on H-plane | ||
Beam-scanning angles @ frequency | @ 18.8 GHz | @ 17.4 GHz |
@ 19.2 GHz | @ 17.8 GHz | |
@ 19.6 GHz | @ 18.2 GHz | |
@ 19.9 GHz | @ 18.6 GHz | |
@ 20.2 GHz | @ 18.9 GHz | |
Beam-scanning rate | /0.4 GHz | /0.4 GHz |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Gao, D.; Liang, L.; Wang, Y. Coplanar Meta-Surface-Based Substrate-Integrated Waveguide Antennas with Broadband and Low Reflections for K-Band Beam Scanning. Sensors 2022, 22, 6353. https://doi.org/10.3390/s22176353
Wang C, Gao D, Liang L, Wang Y. Coplanar Meta-Surface-Based Substrate-Integrated Waveguide Antennas with Broadband and Low Reflections for K-Band Beam Scanning. Sensors. 2022; 22(17):6353. https://doi.org/10.3390/s22176353
Chicago/Turabian StyleWang, Chunli, Dongxing Gao, Likai Liang, and Yanling Wang. 2022. "Coplanar Meta-Surface-Based Substrate-Integrated Waveguide Antennas with Broadband and Low Reflections for K-Band Beam Scanning" Sensors 22, no. 17: 6353. https://doi.org/10.3390/s22176353
APA StyleWang, C., Gao, D., Liang, L., & Wang, Y. (2022). Coplanar Meta-Surface-Based Substrate-Integrated Waveguide Antennas with Broadband and Low Reflections for K-Band Beam Scanning. Sensors, 22(17), 6353. https://doi.org/10.3390/s22176353