Feature Selection Model Based on IWOA for Behavior Identification of Chicken
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Data Acquisition System
2.3. Data Preprocessing
2.4. Behavior Recognition Methods
Improved Whale Optimization Algorithm with Mixed Strategy
- (1)
- Good point set method.
- (2)
- Adaptive weights.
- (3)
- Dimension-by-dimension lens imaging learning strategy based on the adaptive weight factor.
3. Results
3.1. Noise Reduction and Feature Extraction
3.2. Comparison of the IWOA–XGBoost and WOA–XGBoost Models
3.3. Feature Dimensionality Reduction Effect
3.4. Feature Importance Analysis
3.5. Algorithm Performance Comparison
3.6. Comparison of Universality of Feature Subsets
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Wu, P.; Xuan, Z.; Yang, J.; Liu, Y.; Hao, M. Recognition of the movement behavior of stud rams based on acceleration sensor. J. China Agric. Univ. 2018, 23, 104–114. [Google Scholar]
- Hou, Y.; Cai, X.; Wu, Z.; Dong, Z. Research and Implementation of Cattle Behavior Character Recognition Method—Based on Support Vector Machine. J. Agric. Mech. Res. 2018, 40, 36–41. [Google Scholar] [CrossRef]
- Gao, X. The Design of Cows Pedometer System Based on the Acceleration Sensor and the Wireless Transmission. Master’s Thesis, Inner Mongolia University, Hohhot, China, 2014. [Google Scholar]
- Gao, G.; Li, Z.; Huan, Z.; Chen, Y.; Liang, J.; Zhou, B.; Dong, C. Human Behavior Recognition Model Based on Feature and Classifier Selection. Sensors 2021, 21, 7791. [Google Scholar] [CrossRef] [PubMed]
- Diosdado, J.A.V.; Barker, Z.E.; Hodges, H.R.; Amory, J.R.; Croft, D.P.; Bell, N.J.; Coding, E.A. Classification of behaviour in housed dairy cows using an accelerometer-based activity monitoring system. Anim. Biotelem. 2015, 3, 15–28. [Google Scholar] [CrossRef]
- Abell, K.M.; Theurer, M.E.; Larson, R.L.; White, B.J.; Hardin, D.K.; Randle, R.F. Predicting bull behavior events in a multiple-sire pasture with video analysis, accelerometers, and classification algorithms. Comput. Electron. Agric. 2017, 136, 221–227. [Google Scholar] [CrossRef]
- Smith, D.; Dutta, R.; Hellicar, A.; Bishop-Hurley, G.; Rawnsley, R.; Henry, D.; Hills, J.; Timms, G. Bag of Class Posteriors, a new multivariate time series classifier applied to animal behaviour identification. Expert Syst. Appl. 2015, 42, 3774–3784. [Google Scholar] [CrossRef]
- Traulsen, I.; Scheel, C.; Auer, W.; Burfeind, O.; Krieter, J. Using Acceleration Data to Automatically Detect the Onset of Farrowing in Sows. Sensors 2018, 18, 170. [Google Scholar] [CrossRef]
- He, C.; Shen, M.; Liu, L.; Lu, M.; Sun, Y.; Liu, Z. The research and realization of the method for the gait detection in broilers based on acceleration sensor. J. Nanjing Agric. Univ. 2019, 42, 365–372. [Google Scholar]
- Martiskainen, P.; Järvinen, M.; Skön, J.-P.; Tiirikainen, J.; Kolehmainen, M.; Mononen, J. Cow behaviour pattern recognition using a three-dimensional accelerometer and support vector machines. Appl. Anim. Behav. Sci. 2009, 119, 32–38. [Google Scholar] [CrossRef]
- Li, L.; Liu, Z.; Zhao, X.; Li, S. Monitoring and Identification of Natural Mating Cage Breeding Chickens Individual Behavior Based on Acceleration Sensor. Trans. Chin. Soc. Agric. Mach. 2019, 50, 247–254. [Google Scholar]
- Ying, Y.; Zeng, S.; Zhao, A.; Yan, F. Recognition method for prenatal behavior of ewes based on the acquisition nodes of collar. Trans. Chin. Soc. Agric. Eng. 2020, 36, 210–219. [Google Scholar]
- Jin, M. Identification and Classification Methods of Pig Behavior Based on Machine Learning. Ph.D. Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2021. [Google Scholar] [CrossRef]
- Li, X. Behavior Recognition Method Based on Acceleration Sensor; Xi’an University of Science and Technology: Xi’an, China, 2017. [Google Scholar]
- Cheng, L. Research on Optimal Feature Selection for Activity Recognition; Xi’an University of Technology: Xi’an, China, 2016. [Google Scholar]
- Ahmed, I.; Dahou, A.; Chelloug, S.A.; Al-qaness, M.A.A.; Abd Elaziz, M. Feature Selection Model Based on Gorilla Troops Optimizer for Intrusion Detection Systems. J. Sens. 2022, 2022, 6131463. [Google Scholar] [CrossRef]
- Das, A.K.; Das, S.; Ghosh, A. Ensemble feature selection using bi-objective genetic algorithm. Knowl. Based Syst. 2017, 123, 116–127. [Google Scholar] [CrossRef]
- Hu, P.; Pan, J.S.; Chu, S.C. Improved binary grey wolf optimizer and its application for feature selection. Knowl. Based Syst. 2020, 195, 105746. [Google Scholar] [CrossRef]
- Hancer, E.; Xue, B.; Zhang, M.; Karaboga, D.; Akay, B. Pareto front feature selection based on artificial bee colony optimization. Inf. Sci. 2018, 422, 462–479. [Google Scholar]
- Chen, K.; Zhou, F.Y.; Yuan, X.F. Hybrid particle swarm optimization with spiral-shaped mechanism for feature selection. Expert Syst. Appl. 2019, 128, 140–156. [Google Scholar] [CrossRef]
- Pourpanah, F.; Shi, Y.; Lim, C.P.; Hao, Q.; Tan, C.J. Feature selection based on brain storm optimization for data classification. Appl. Soft Comput. 2019, 10, 761–775. [Google Scholar] [CrossRef]
- Taradeh, M.; Mafarja, M.; Heidari, A.A.; Faris, H.; Aljarah, I.; Mirjalili, S.; Fujita, H. An evolutionary gravitational search-based feature selection. Inf. Sci. 2019, 497, 219–239. [Google Scholar] [CrossRef]
- Wang, M.; Wu, C.; Wang, L.; Xiang, D.; Huang, X. A feature selection approach for hyperspectral image based on modified ant lion optimizer. Knowl. Based Syst. 2018, 168, 39–48. [Google Scholar] [CrossRef]
- Kiziloz, H.E.; Deniz, A.; Dokeroglu, T.; Cosar, A. Novel multiobjective TLBO algorithms for the feature subset selection problem. Neurocomputing 2018, 306, 94–107. [Google Scholar] [CrossRef]
- Li, M.; Xu, G.; Lai, Q.; Chen, J. A chaotic strategy-based quadratic Opposition-Based Learning adaptive variable-speed whale optimization algorithm. Math. Comput. Simul. 2022, 193, 71–99. [Google Scholar] [CrossRef]
- Ma, W.; Zhu, X. Sparrow Search Algorithm Based on Levy Flight Disturbance Strategy. J. Appl. Sci. 2022, 40, 116–130. [Google Scholar]
- Zhang, X.; Wang, X.; Chen, H.; Wang, D.; Fu, Z. Improved GWO for large-scale function optimization and MLP optimization in cancer identification. Neural Comput. Appl. 2020, 32, 1305–1325. [Google Scholar] [CrossRef]
- Huang, X.; Zhong, S. A Multi-Strategy-Driven Salp Swarm Algorithm for Global Optimization. Comput. Simul. 2022, 39, 308–311, 357. [Google Scholar]
- Li, A.; Liu, S. Multi-strategy improved whale optimization algorithm. Appl. Res. Comput. 2022, 39, 1415–1421. [Google Scholar]
- Xu, H.; Fang, C.; Liu, X.; Ye, Z. Network intrusion system based on improved moth-flame optimization algorithm. J. Comput. Appl. 2018, 38, 3231–3235+3240. [Google Scholar]
- Zhao, Z.; Dai, Y. Improve Shuffled Binary Grasshopper Optimization Feature Selection Algorithm. J. Front. Comput. Sci. Technol. 2021, 15, 1339–1349. [Google Scholar]
- Elaziz, M.A.; Abualigah, L.; Yousri, D.; Oliva, D.; Al-Qaness, M.A.A.; Nadimi-Shahraki, M.H.; Ewees, A.A.; Lu, S.; Ibrahim, R.A. Boosting atomic orbit search using dynamic-based learning for feature selection. Mathematics 2021, 9, 2786. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Elaziz, M.A.; Oliva, D. Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm. Energy Convers. Manag. 2018, 171, 1843–1859. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, X.; Chen, Y.; Liu, Z. A modified whale optimization algorithm for large-scale global optimization problems. Expert Syst. Appl. 2018, 114, 563–577. [Google Scholar] [CrossRef]
- Kaur, G.; Arora, S. Chaotic whale optimization algorithm. J. Comput. Des. Eng. 2018, 5, 275–284. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Wang, G.; Liu, B. An Improved Hybrid Whale Optimization Algorithm Based on Differential Evolution. In Proceedings of the 2020 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA), Tianjin, China, 26–28 June 2020; IEEE: New York, NY, USA, 2020; pp. 103–107. [Google Scholar]
- Xuyi, S.; Ming, L. Whale Optimization Algorithm Improved Effectiveness Analysis Based on Compound Chaos Optimization Strategy and Dynamic Optimization Parameters. In Proceedings of the 2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS 2019), Hunan, China, 14 September 2019; Volume 2, pp. 123–126. [Google Scholar] [CrossRef]
- Sayed, G.I.; Darwish, A.; Hassanien, A.E. A new chaotic whale optimization algorithm for features selection. J. Classif. 2018, 35, 300–344. [Google Scholar] [CrossRef]
- Mafarja, M.M.; Mirjalili, S. Hybrid Whale Optimization Algorithm with simulated annealing for feature selection. Neurocomputing 2017, 260, 302–312. [Google Scholar] [CrossRef]
- Mafarja, M.; Mirjalili, S. Whale optimization approaches for wrapper feature selection. Appl. Soft Comput. 2018, 62, 441–453. [Google Scholar] [CrossRef]
- Yu, H.; Wang, Z.; Lei, Z.; Gao, S. Whale optimization algorithm based differential evolution for feature selection. Electron. Des. Eng. 2021, 29, 12–17+22. [Google Scholar] [CrossRef]
- Emary, E.; Zawbaa, H.M.; Hassanien, A.E. Binary ant lion approaches for feature selection. Neurocomputing 2016, 213, 54–65. [Google Scholar] [CrossRef]
- Jia, H.; Li, Y.; Sun, K. Simultaneous Feature Selection Optimization Based on Hybrid Sooty Tern Optimization Algorithm and Genetic Algorithm. Acta Autom. Sin. 2022, 48, 1601–1615. [Google Scholar] [CrossRef]
- Liu, Y. Research on Financial Crisis Early Warning of Scientific and Technological Enterprises Based on the Method of Survival Analysis. Master’s Thesis, Wuhan University of Science and Technology, Wuhan, China, 2020. [Google Scholar]
- Ma, L.; Wang, R.; Zhao, B.; Liu, X.; Liao, G.; Zhang, Y. Impaired Behavior Classification for People with Special Needs Based on Wearable Devices. J. Data Acquis. Process. 2022, 37, 279–287. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H.; Zhao, K.; Liu, G. Cow movement behavior classification based on optimal binary decision-tree classification model. Trans. Chin. Soc. Agric. Eng. 2018, 34, 202–210. [Google Scholar]
Method | Distribution | Accuracy % | Fitness Value | Convergent Algebra | Feature Size |
---|---|---|---|---|---|
IWOA–XGBoost | max | 95.58 | 0.0583 | 16 | 24 |
min | 94.44 | 0.0465 | 2 | 9 | |
ave | 94.86 | 0.0539 | 7.15 | 13 | |
WOA–XGBoost | max | 94.94 | 0.063 | 25 | 34 |
min | 93.93 | 0.056 | 4 | 10 | |
ave | 94.35 | 0.060 | 11.65 | 17.9 |
Method | Ture Behavior | Predicted Behavior | Total | Precision % | Recall % | F1 Score % | Accuracy % | |
---|---|---|---|---|---|---|---|---|
Eating | Drinking | |||||||
IWOA–XGBoost | Eating | 458 | 21 | 479 | 97.03 | 95.62 | 96.32 | 95.58 |
Drinking | 14 | 298 | 312 | 93.42 | 95.51 | 94.45 | 95.58 | |
total | 472 | 319 | 791 | 95.23 | 95.57 | 95.39 | 95.58 | |
XGBoost | Eating | 454 | 25 | 479 | 94.00 | 94.78 | 94.39 | 93.17 |
Drinking | 29 | 283 | 312 | 91.88 | 90.71 | 91.29 | 93.17 | |
Total | 483 | 308 | 791 | 92.94 | 92.75 | 92.84 | 93.17 |
Before Feature Optimization | After Feature Optimization | ||||||||
---|---|---|---|---|---|---|---|---|---|
Method | Behavior | Precision | Recall | F1-Score | Accuracy | Precision | Recall | F1-Score | Accuracy |
Logistic Regression | eating | 94.21 | 95.2 | 94.7 | 93.35 | 95.00 | 95.2 | 95.1 | 94.06 |
drinking | 92.51 | 91.03 | 91.76 | 92.60 | 92.31 | 92.46 | |||
Decision Tree | eating | 91.24 | 93.53 | 92.37 | 90.64 | 94.42 | 91.86 | 93.12 | 91.78 |
drinking | 89.67 | 86.22 | 87.91 | 88.00 | 91.67 | 89.80 | |||
GaussianNB | eating | 94.69 | 93.11 | 93.89 | 92.67 | 94.58 | 94.78 | 94.68 | 93.55 |
drinking | 89.69 | 91.99 | 90.82 | 91.96 | 91.67 | 91.81 | |||
LightGBM | eating | 95.38 | 94.78 | 95.08 | 94.06 | 95.82 | 95.62 | 95.72 | 94.82 |
drinking | 92.06 | 92.95 | 92.5 | 93.29 | 93.59 | 93.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Di, M.; Xue, H.; Zhou, Z.; Wang, Z. Feature Selection Model Based on IWOA for Behavior Identification of Chicken. Sensors 2022, 22, 6147. https://doi.org/10.3390/s22166147
Li L, Di M, Xue H, Zhou Z, Wang Z. Feature Selection Model Based on IWOA for Behavior Identification of Chicken. Sensors. 2022; 22(16):6147. https://doi.org/10.3390/s22166147
Chicago/Turabian StyleLi, Lihua, Mengzui Di, Hao Xue, Zixuan Zhou, and Ziqi Wang. 2022. "Feature Selection Model Based on IWOA for Behavior Identification of Chicken" Sensors 22, no. 16: 6147. https://doi.org/10.3390/s22166147
APA StyleLi, L., Di, M., Xue, H., Zhou, Z., & Wang, Z. (2022). Feature Selection Model Based on IWOA for Behavior Identification of Chicken. Sensors, 22(16), 6147. https://doi.org/10.3390/s22166147