ECG Patient Simulator Based on Mathematical Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Models
2.1.1. Heterogeneous Nonlinear Oscillators
2.1.2. Reaction–Diffusion Model Spatially Discretized
2.1.3. Ring of Three-Coupled Oscillators
2.1.4. Extended Dynamical Model Based on a Quasi-Periodic Motion
2.2. Hardware
2.3. Software
3. Results
3.1. Rhythm Disorders
3.1.1. Network of Heterogeneous Oscillators
3.1.2. Reaction–Diffusion Model Spatially Discretized
3.1.3. Ring of Three-Coupled Oscillators
3.1.4. Extended Dynamical Model Based on a Quasi-Periodic Motion
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ECG | Electrocardiogram |
RK4 | Fourth-order Runge-Kutta |
DAC | Digital-to-analog converter |
OPAMP | Operational amplifier |
SA | Sinoatrial |
AV | Atrioventricular |
HP | His–Purkinje |
BVAM | Barrio–Varea–Aragon–Maini |
VdP | Van der Pol |
VdM | Van der Mark |
MCU | Microcontrollers |
GUI | Graphical user interface |
USB | Universal serial bus |
SPI | Serial peripheral interface |
I2C | Inter-integrated circuit |
USART | Universal synchronous and asynchronous serial receiver and transmitter |
CAN | Controller area network |
TFT LCD | Thin-film-transistor liquid-crystal display |
DC | Direct current |
SCK | Serial clock |
MOSI | Master out slave in |
MISO | Master in slave out |
PCB | Printed circuit board |
References
- Beuter, A.; Glass, L.; Mackey, M.C.; Titcombe, M.S. Nonlinear Dynamics in Physiology and Medicine; Springer: New York, NY, USA, 2003. [Google Scholar]
- Ottesen, J.T.; Olufsen, M.S.; Larsen, J.K. Applied Mathematical Models in Human Physiology; SIAM: Philadelphia, PA, USA, 2004. [Google Scholar]
- Keener, J.P.; Sneyd, J. Mathematical Physiology. II: Systems Physiology; Springer: New York, NY, USA, 2008. [Google Scholar]
- Francis, J. ECG monitoring leads and special leads. Indian Pacing Electrophysiol. J. 2016, 16, 92–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soroudi, A.; Hernández, N.; Berglin, L.; Nierstrasz, V. Electrode placement in electrocardiography smart garments: A review. J. Electrocardiol. 2019, 57, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Gregory, P.; Lodge, S.; Kilner, T.; Paget, S. Accuracy of ECG Chest Electrode Placements by Paramedics; an observational study. medRxiv 2019. [Google Scholar] [CrossRef] [PubMed]
- Chattha, I.S.; Sy, R.W.; Yee, R.; Gula, L.J.; Skanes, A.C.; Klein, G.J.; Bennett, M.T.; Krahn, A.D. Utility of the recovery electrocardiogram after exercise: A novel indicator for the diagnosis and genotyping of long QT syndrome? Heart Rhythm. 2010, 7, 906–911. [Google Scholar] [CrossRef]
- Sideris, G.; Voicu, S.; Dillinger, J.G.; Stratiev, V.; Logeart, D.; Broche, C.; Vivien, B.; Brun, P.Y.; Deye, N.; Capan, D.; et al. Value of post-resuscitation electrocardiogram in the diagnosis of acute myocardial infarction in out-of-hospital cardiac arrest patients. Resuscitation 2011, 82, 1148–1153. [Google Scholar] [CrossRef]
- Simard, C.; Schwartz, B.C. An Electrocardiogram-Based Diagnosis of Coma. Am. J. Med. 2019, 132, e735–e736. [Google Scholar] [CrossRef]
- Ma, Y.; Sun, S.; Zhang, M.; Guo, D.; Liu, A.R.; Wei, Y.; Peng, C.K. Electrocardiogram-based sleep analysis for sleep apnea screening and diagnosis. Sleep Breath. 2020, 24, 231–240. [Google Scholar] [CrossRef]
- Finocchiaro, G.; Merlo, M.; Sheikh, N.; De Angelis, G.; Papadakis, M.; Olivotto, I.; Rapezzi, C.; Carr-White, G.; Sharma, S.; Mestroni, L.; et al. The electrocardiogram in the diagnosis and management of patients with dilated cardiomyopathy. Eur. J. Heart Fail. 2020. [Google Scholar] [CrossRef]
- Tayler, D.; Vincent, R.; Jolley, B. The importance of assessing the fidelity of electrocardiographs by using a simple calibration signal. J. Med. Eng. Technol. 2008, 32, 365–370. [Google Scholar] [CrossRef]
- Yang, S.; Lam, B.; Ng, C.M. Calibration of Electrocardiograph (ECG) Simulators. NCSLI Meas. 2018, 12, 46–53. [Google Scholar] [CrossRef]
- da S. Luz, E.J.; Schwartz, W.R.; Cámara-Chávez, G.; Menotti, D. ECG-based heartbeat classification for arrhythmia detection: A survey. Comput. Methods Programs Biomed. 2016, 127, 144–164. [Google Scholar]
- Liu, W.; Huang, Q.; Chang, S.; Wang, H.; He, J. Multiple-feature-branch convolutional neural network for myocardial infarction diagnosis using electrocardiogram. Biomed. Signal Process. Control 2018, 45, 22–32. [Google Scholar] [CrossRef]
- Zhu, H.; Cheng, C.; Yin, H.; Li, X.; Zuo, P.; Ding, J.; Lin, F.; Wang, J.; Zhou, B.; Li, Y.; et al. Automatic multilabel electrocardiogram diagnosis of heart rhythm or conduction abnormalities with deep learning: A cohort study. Lancet Digit. Health 2020, 2, e348–e357. [Google Scholar] [CrossRef]
- Josko, A.; Rak, R.J. Effective simulation of signals for testing ECG analyzer. IEEE Trans. Instrum. Meas. 2005, 54, 1019–1024. [Google Scholar] [CrossRef]
- Chien Chang, J.R.; Tai, C.C. Accurate programmable electrocardiogram generator using a dynamical model implemented on a microcontroller. Rev. Sci. Instrum. 2006, 77, 075104. [Google Scholar] [CrossRef] [Green Version]
- Chang, K.H.; Young, M.S. Design of a Three-Lead Synthetic ECG Generator Using the Simplified McSharry’s Model. Instrum. Sci. Technol. 2009, 37, 397–409. [Google Scholar] [CrossRef]
- Shorten, G.P.; Burke, M.J. A versatile temperature-stable ECG simulator. J. Med. Eng. Technol. 2011, 35, 92–102. [Google Scholar] [CrossRef]
- Wei, Y.C.; Wei, Y.Y.; Wey, S.T.; Jang, L.S. Design of a Programmable ECG Generator Using a Dynamical Model. Appl. Mech. Mater. 2013, 311, 485–490. [Google Scholar] [CrossRef]
- Edelmann, J.C.; Mair, D.; Ziesel, D.; Burtscher, M.; Ussmueller, T. An ECG simulator with a novel ECG profile for physiological signals. J. Med. Eng. Technol. 2018, 42, 501–509. [Google Scholar] [CrossRef] [Green Version]
- Shafique, M.; Naeem, A. Design and Development of an Efficient and Cost Effective ECG Simulator Capable of Generating Normal and Pathological ECG Signals. Int. J. Simul.-Syst. Sci. Technol. 2018, 19, 1.1–1.7. [Google Scholar] [CrossRef]
- Yener, S.C.; Mutlu, R. A microcontroller-based ECG signal generator design utilizing microcontroller PWM output and experimental ECG data. In Proceedings of the 2018 Electric Electronics, Computer Science, Biomedical Engineerings’ Meeting (EBBT), Istanbul, Turkey, 18–19 April 2018; pp. 1–4. [Google Scholar]
- Manju, B.; Akshaya, B. Simulation Of Pathological ECG Signal Using Transform Method. Procedia Comput. Sci. 2020, 171, 2121–2127. [Google Scholar]
- Raupach, T.; Harendza, S.; Anders, S.; Schuelper, N.; Brown, J. How can we improve teaching of ECG interpretation skills? Findings from a prospective randomised trial. J. Electrocardiol. 2016, 49, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Berndt, M.; Thomas, F.; Bauer, D.; Härtl, A.; Hege, I.; Kääb, S.; Fischer, M.R.; Heitzmann, N. The influence of prompts on final year medical students’ learning process and achievement in ECG interpretation. GMS J. Med. Educ. 2020, 37, 1–19. [Google Scholar] [CrossRef]
- Patel, K.; El Tokhy, O.; Patel, S.; Maroof, H. Improving electrocardiogram interpretation skills for medical students. Adv. Med. Educ. Pract. 2017, 8, 75. [Google Scholar] [CrossRef] [Green Version]
- Waechter, J.; Reading, D.; Lee, C.H.; Walker, M. Quantifying the medical student learning curve for ECG rhythm strip interpretation using deliberate practice. GMS J. Med. Educ. 2019, 36, 1–21. [Google Scholar] [CrossRef]
- Jafarnia-Dabanloo, N.; McLernon, D.; Zhang, H.; Ayatollahi, A.; Johari-Majd, V. A modified Zeeman model for producing HRV signals and its application to ECG signal generation. J. Theor. Biol. 2007, 244, 180–189. [Google Scholar] [CrossRef]
- Gidea, M.; Gidea, C.; Byrd, W. Deterministic models for simulating electrocardiographic signals. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 3871–3880. [Google Scholar] [CrossRef]
- Das, S.; Maharatna, K. Fractional dynamical model for the generation of ECG like signals from filtered coupled Van-der Pol oscillators. Comput. Methods Programs Biomed. 2013, 112, 490–507. [Google Scholar] [CrossRef] [Green Version]
- Ryzhii, E.; Ryzhii, M. Modeling of heartbeat dynamics with a system of coupled nonlinear oscillators. In International Conference on Biomedical Informatics and Technology; Springer: Berlin/Heidelberg, Germany, 2013; pp. 67–75. [Google Scholar]
- Ryzhii, M.; Ryzhii, E. Simulink heart model for simulation of the effect of external signals. In Proceedings of the 2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Chiang Mai, Thailand, 5–7 October 2016; pp. 1–5. [Google Scholar]
- Barrio, R.A.; Dominguez-Roman, I.; Quiroz-Juarez, M.A.; Jimenez-Ramirez, O.; Vazquez-Medina, R.; Aragon, J.L. Modelling the electrical activity of the heart. In Mathematical Biology and Biological Physics; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2017; pp. 51–59. [Google Scholar]
- Quiroz-Juárez, M.A.; Jiménez-Ramírez, O.; Aragón, J.; Del Río-Correa, J.L.; Vázquez-Medina, R. Periodically kicked network of rlc oscillators to produce ecg signals. Comput. Biol. Med. 2019, 104, 87–96. [Google Scholar] [CrossRef]
- Quiroz-Juarez, M.A.; Jiménez-Ramírez, O.; Vázquez-Medina, R.; Ryzhii, E.; Ryzhii, M.; Aragón, J.L. Cardiac conduction model for generating 12 lead ECG signals with realistic heart rate dynamics. IEEE Trans. Nanobiosci. 2018, 17, 525–532. [Google Scholar] [CrossRef]
- Quiroz-Juárez, M.; Jiménez-Ramírez, O.; Vázquez-Medina, R.; Breña-Medina, V.; Aragón, J.; Barrio, R. Generation of ECG signals from a reaction-diffusion model spatially discretized. Sci. Rep. 2019, 9, 19000. [Google Scholar] [CrossRef] [Green Version]
- Gois, S.R.; Savi, M.A. An analysis of heart rhythm dynamics using a three-coupled oscillator model. Chaos Solitons Fractals 2009, 41, 2553–2565. [Google Scholar] [CrossRef]
- Sayadi, O.; Shamsollahi, M.B.; Clifford, G.D. Synthetic ECG generation and Bayesian filtering using a Gaussian wave-based dynamical model. Physiol. Meas. 2010, 31, 1309. [Google Scholar] [CrossRef] [Green Version]
- Ryzhii, E.; Ryzhii, M. A heterogeneous coupled oscillator model for simulation of ECG signals. Comput. Methods Programs Biomed. 2014, 117, 40–49. [Google Scholar] [CrossRef]
- Quiroz-Juarez, M.A.; Vázquez-Medina, R.; Ryzhii, E.; Ryzhii, M.; Aragón, J. Quasiperiodicity route to chaos in cardiac conduction model. Commun. Nonlinear Sci. Numer. Simul. 2017, 42, 370–378. [Google Scholar] [CrossRef]
- Postnov, D.; Han, S.K.; Kook, H. Synchronization of diffusively coupled oscillators near the homoclinic bifurcation. Phys. Rev. E 1999, 60, 2799. [Google Scholar] [CrossRef] [Green Version]
- Grudziński, K.; Żebrowski, J.J. Modeling cardiac pacemakers with relaxation oscillators. Phys. A Stat. Mech. Its Appl. 2004, 336, 153–162. [Google Scholar] [CrossRef]
- Żebrowski, J.; Grudziński, K.; Buchner, T.; Kuklik, P.; Gac, J.; Gielerak, G.; Sanders, P.; Baranowski, R. Nonlinear oscillator model reproducing various phenomena in the dynamics of the conduction system of the heart. Chaos Interdiscip. J. Nonlinear Sci. 2007, 17, 015121. [Google Scholar] [CrossRef] [Green Version]
- FitzHugh, R. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1961, 1, 445. [Google Scholar] [CrossRef] [Green Version]
- Nagumo, J.; Arimoto, S.; Yoshizawa, S. An active pulse transmission line simulating nerve axon. Proc. IRE 1962, 50, 2061–2070. [Google Scholar] [CrossRef]
- Rogers, J.M.; McCulloch, A.D. A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Eng. 1994, 41, 743–757. [Google Scholar] [CrossRef] [PubMed]
- Newhouse, S.; Ruelle, D.; Takens, F. Occurrence of strange AxiomA attractors near quasi periodic flows on Tm, m ≧ 3. Commun. Math. Phys. 1978, 64, 35–40. [Google Scholar] [CrossRef]
- Garfinkel, A.; Chen, P.S.; Walter, D.O.; Karagueuzian, H.S.; Kogan, B.; Evans, S.J.; Karpoukhin, M.; Hwang, C.; Uchida, T.; Gotoh, M.; et al. Quasiperiodicity and chaos in cardiac fibrillation. J. Clin. Investig. 1997, 99, 305–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witkowski, F.X.; Leon, L.J.; Penkoske, P.A.; Giles, W.R.; Spano, M.L.; Ditto, W.L.; Winfree, A.T. Spatiotemporal evolution of ventricular fibrillation. Nature 1998, 392, 78–82. [Google Scholar] [CrossRef]
- Barrio, R.; Varea, C.; Aragón, J.; Maini, P. A two-dimensional numerical study of spatial pattern formation in interacting Turing systems. Bull. Math. Biol. 1999, 61, 483–505. [Google Scholar] [CrossRef] [Green Version]
- Van der Pol, B.; Van der Mark, J. LXXII. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1928, 6, 763–775. [Google Scholar] [CrossRef]
- McSharry, P.E.; Clifford, G.D.; Tarassenko, L.; Smith, L.A. A dynamical model for generating synthetic electrocardiogram signals. IEEE Trans. Biomed. Eng. 2003, 50, 289–294. [Google Scholar] [CrossRef] [Green Version]
- Goldberger, E. The aVl, aVr, and aVf leads: A simplification of standard lead electrocardiography. Am. Heart J. 1942, 24, 378–396. [Google Scholar] [CrossRef]
- John, R.M.; Kumar, S. Sinus node and atrial arrhythmias. Circulation 2016, 133, 1892–1900. [Google Scholar] [CrossRef]
- Huikuri, H.V.; Castellanos, A.; Myerburg, R.J. Sudden death due to cardiac arrhythmias. N. Eng. J. Med. 2001, 345, 1473–1482. [Google Scholar] [CrossRef]
- Keating, M.T.; Sanguinetti, M.C. Molecular and cellular mechanisms of cardiac arrhythmias. Cell 2001, 104, 569–580. [Google Scholar] [CrossRef] [Green Version]
- Sörnmo, L.; Laguna, P. The electrocardiogram—A brief background. In Bioelectrical Signal Processing in Cardiac and Neurological Applications; Elsevier Academic Press: Burlington, MA, USA, 2005; pp. 411–452. [Google Scholar]
- Ferreira, B.B.; de Paula, A.S.; Savi, M.A. Chaos control applied to heart rhythm dynamics. Chaos Solitons Fractals 2011, 44, 587–599. [Google Scholar] [CrossRef]
- Khan, P.; Khan, Y.; Kumar, S. Activity-based tracking and stabilization of human heart rate using fuzzy FO-PID controller. IEEE J. Emerg. Sel. Top. Ind. Electron. 2021, 3, 372–381. [Google Scholar] [CrossRef]
- Gharesi, N.; Arefi, M.M.; Khayatian, A.; Bahrami, Z. Extended state observer-based control of heartbeat described by heterogeneous coupled oscillator model. Commun. Nonlinear Sci. Numer. Simul. 2021, 101, 105884. [Google Scholar] [CrossRef]
- Tripathy, R.K.; Bhattacharyya, A.; Pachori, R.B. Localization of myocardial infarction from multi-lead ECG signals using multiscale analysis and convolutional neural network. IEEE Sens. J. 2019, 19, 11437–11448. [Google Scholar] [CrossRef]
- Dekimpe, R.; Bol, D. ECG Arrhythmia Classification on an Ultra-Low-Power Microcontroller. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 456–466. [Google Scholar] [CrossRef]
- Li, W. Wavelets for electrocardiogram: Overview and taxonomy. IEEE Access 2018, 7, 25627–25649. [Google Scholar] [CrossRef]
Pathology | Parameters |
---|---|
Network of heterogeneous oscillators | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and |
Discretized reaction–diffusion model | , , , , , , and . |
Ring of three coupled oscillators | , , , , , , , , , , , , , , , , , , , , , , , , , , and . |
Model based on a quasiperiodic motion | , , , , , and . |
Pathology | Parameters |
---|---|
Sinus Tachycardia | , , , , , |
Atrial Flutter | , , , , , |
Ventricular Tachycardia | , , , , , |
Ventricular Flutter | , , , , , |
Pathology | Parameters |
---|---|
Ventricular Flutter | , , , , , , and |
Sinus Bradycardia | , , , , , , and |
Ventricular Fibrillation | , , , , , , and |
Waves | Sinus Bradycardia | Sinus Tachycardia | Ventricular Flutter | Atrial Fibrillation | Ventricular Tachycardia |
---|---|---|---|---|---|
Q | |||||
R | |||||
S | |||||
) | |||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quiroz-Juárez, M.A.; Rosales-Juárez, J.A.; Jiménez-Ramírez, O.; Vázquez-Medina, R.; Aragón, J.L. ECG Patient Simulator Based on Mathematical Models. Sensors 2022, 22, 5714. https://doi.org/10.3390/s22155714
Quiroz-Juárez MA, Rosales-Juárez JA, Jiménez-Ramírez O, Vázquez-Medina R, Aragón JL. ECG Patient Simulator Based on Mathematical Models. Sensors. 2022; 22(15):5714. https://doi.org/10.3390/s22155714
Chicago/Turabian StyleQuiroz-Juárez, Mario Alan, Juan Alberto Rosales-Juárez, Omar Jiménez-Ramírez, Rubén Vázquez-Medina, and José Luis Aragón. 2022. "ECG Patient Simulator Based on Mathematical Models" Sensors 22, no. 15: 5714. https://doi.org/10.3390/s22155714
APA StyleQuiroz-Juárez, M. A., Rosales-Juárez, J. A., Jiménez-Ramírez, O., Vázquez-Medina, R., & Aragón, J. L. (2022). ECG Patient Simulator Based on Mathematical Models. Sensors, 22(15), 5714. https://doi.org/10.3390/s22155714