
Citation: Quiroz-Juárez, M.A.;

Rosales-Juárez, J.A.;

Jiménez-Ramírez, O.;

Vázquez-Medina, R.; Aragón, J.L.

ECG Patient Simulator Based on

Mathematical Models. Sensors 2022,

22, 5714. https://doi.org/

10.3390/s22155714

Academic Editors: Alessandro

Bevilacqua and Margherita Mottola

Received: 16 June 2022

Accepted: 27 July 2022

Published: 30 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

ECG Patient Simulator Based on Mathematical Models
Mario Alan Quiroz-Juárez 1,*,† , Juan Alberto Rosales-Juárez 2,†, Omar Jiménez-Ramírez 2 ,
Rubén Vázquez-Medina 3 and José Luis Aragón 1

1 Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México,
Boulevard Juriquilla 3001, Queretaro 76230, Mexico; jlaragon@unam.mx

2 Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Santa Ana 1000,
San Francisco Culhuacán, Mexico City 04430, Mexico; jrosalesj1600@alumno.ipn.mx (J.A.R.-J.);
ojimenezr@ipn.mx (O.J.-R.)

3 Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada,
Cerro Blanco 141, Colinas del Cimatario, Queretaro 76090, Mexico; ruvazquez@ipn.mx

* Correspondence: maqj@fata.unam.mx
† These authors contributed equally to this work.

Abstract: In this work, we propose a versatile, low-cost, and tunable electronic device to generate
realistic electrocardiogram (ECG) waveforms, capable of simulating ECG of patients within a wide
range of possibilities. A visual analysis of the clinical ECG register provides the cardiologist with
vital physiological information to determine the patient’s heart condition. Because of its clinical
significance, there is a strong interest in algorithms and medical ECG measuring devices that acquire,
preserve, and process ECG recordings with high fidelity. Bearing this in mind, the proposed electronic
device is based on four different mathematical models describing macroscopic heartbeat dynamics
with ordinary differential equations. Firstly, we produce full 12-lead ECG profiles by implementing
a model comprising a network of heterogeneous oscillators. Then, we implement a discretized
reaction–diffusion model in our electronic device to reproduce ECG waveforms from various rhythm
disorders. Finally, in order to show the versatility and capabilities of our system, we include two
additional models, a ring of three coupled oscillators and a model based on a quasiperiodic motion,
which can reproduce a wide range of pathological conditions. With this, the proposed device can
reproduce around thirty-two cardiac rhythms with the possibility of exploring different parameter
values to simulate new arrhythmias with the same hardware. Our system, which is a hybrid analog–
digital circuit, generates realistic ECG signals through digital-to-analog converters whose amplitudes
and waveforms are controlled through an interactive and friendly graphic interface. Our ECG
patient simulator arises as a promising platform for assessing the performance of electrocardiograph
equipment and ECG signal processing software in clinical trials. Additionally the produced 12-lead
profiles can be tested in patient monitoring systems.

Keywords: ECG simulator; biomedical engineering; cardiac dynamics; synthetic ECG generation;
embedded system

1. Introduction

In the cardiac cycle, the so-called systolic and diastolic phases refer to the state of
contraction and relaxation in the heart, respectively. Electrical impulses arising from trans-
membrane ionic currents governs these phases [1–3]. As a consequence of this bioelectrical
activity, variations in the skin’s electrical potential are produced, which can be measured
with highly sensitive instruments known as electrocardiographs and electrodes placed at
predefined points on the skin surface [4–6]. The recording of these potential differences
is known as an electrocardiogram (ECG) and represents a clinical tool widely used by
cardiologists in routine medical evaluations to determine the pathophysiological conditions
of the patient [7–11].
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Because of the great significance of ECG waveforms in the diagnosis of cardiovas-
cular diseases, there has been a significant amount of research effort for ensuring that
medical electrocardiogram measuring devices [12,13] and biomedical signal processing
algorithms [14–16] acquire, preserve, and process ECG recordings with high fidelity. In this
context, the synthetic ECG patient simulators have emerged as useful tools to test, evaluate,
and calibrate electrocardiograph equipment and ECG signal processing software [17–25].
In fact, ECG simulators have been proposed not only as a worthwhile tool for equipment
and algorithm testing but also as a powerful instrument to assist in the teaching of ECG
diagnosis. With its help, ECG interpretation skills of undergraduate medical students can
be improved, mainly because a low performances of this medical skill has been reported
between students, residents, and physicians [26,27]. Of course, ECG misinterpretations can
expose the patient to improper prescription and delays in the right treatment [28,29].

Hitherto, unfortunately, ECG simulators do not fulfill all desirable features of a uni-
versal simulator because they show shortcomings in amplitudes, waveforms, and time-
intervals of the produced signals. Additionally, most ECG simulators need an internal
database of sampled healthy and pathological ECG waveforms. The main disadvantage of
these implementations is that the variety of ECG waveforms they produce is limited by
the device’s storing capability, so they are not a useful tool for a dynamic interpretation of
abnormalities in the heart.

In order to overcome these shortcomings, and in light of the importance of mathe-
matical modeling on the understanding of complex biological processes involved in the
cardiac conduction system [30–36], in this work, we propose an ECG patient simulator
that implements four different mathematical models to generate realistic ECG waveforms
within a broad range of possibilities. Our ECG patient simulator is an electronic device
that comprises a hybrid analog–digital circuit formed by 32-bit microcontrollers, digital-to-
analog converters (DACs), and general-purpose operational amplifiers (OPAMPs), with
the possibility of controlling the amplitudes, waveforms, and parameters of the mathemati-
cal models through an interactive and friendly graphic interface. Additionally, the used
mathematical models in our electronic device have the advantage of allowing us to explore
different parameter conditions to simulate new arrhythmias with the same hardware.

To mimic clinical 12-lead ECG waveforms, we implement an extended heterogeneous
oscillator model of the cardiac conduction system [37], whose heart rate can be driven via
software. We also implement a discretized reaction–diffusion model [38], a ring of three
coupled oscillators [39], and a model based on quasiperiodic motions [40] for reproducing
ECG with a great variety of rhythm disorders. Given this, we consider that our electronic
device is a useful tool for research, medical education, and clinical testing purposes. In par-
ticular, the proposed simulator can be used to assess the performance of electrocardiograph
equipment and ECG signal processing software in clinical trials.

2. Materials and Methods

As already mentioned, most ECG patient simulators use, as a core generator, an
internal database comprising sampled healthy and pathological ECG waveforms, which are
then analogically played back by a digital-to-analog converter. To avoid this, we implement
four different models describing macroscopic heartbeat dynamics with a set of ordinary
differential equations, all of them capable of reproducing synthetic ECG waveforms under
normal and pathological conditions. In what follows, we briefly review each of the models
implemented in the proposed ECG patient simulator.

2.1. The Models
2.1.1. Heterogeneous Nonlinear Oscillators

A general and useful model to reproduce full 12-lead ECG waveforms is the extended
heterogeneous oscillator model of the cardiac conduction system [37]. The first version
of this model was proposed by [41], and later, it was applied to simulate the appearance
of ventricular fibrillation as an instance of chaos [42]. The model consists of main natural
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pacemakers represented by modified Van der Pol oscillators [43–45], and electrical response
of atrial and ventricular muscles (depolarization and repolarization processes) modeled by
modified FitzHugh–Nagumo equations [46–48].

Natural pacemakers, namely, sinoatrial (SA) node, atrioventricular (AV) node, and
His–Purkinje (HP) system, are given by the following sets of ordinary differential equations:

ẋi = yi,

ẏi = −ai
(
x2

i − u
)
yi − fixi(xi + d)(xi + ei) + Knode

(
yτnode

i−1 − yi

)
,

(1)

where xi stand for action potentials, i = 1, 2, 3 corresponds to SA, AV and HP nodes, respec-
tively. Knode denotes the particular coupling constant for each pacemaker, yτnode

i = yi(t− τnode)
are the time-delayed coupling components, and τnode is the corresponding coupling time
delay. The terms ai, fi, u, d, and ei are the parameters of each oscillator.

The description of the electrical responses of AT and VN muscles are described by:

żj = k j
(
−cjzj

(
zj − wj1

)(
zj − wj2

)
− bjvj − gjvjzj + Ij

)
,

v̇j = k jhj
(
zj − vj

)
,

(2)

with j = 1, . . . , 4, which refers to the P-wave, Ta-wave, QRS complex, and T-wave, respectively.
The magnitude of the stimulation current that couples the SA and HP pacemaker

to AT and VN muscles are, respectively, Ij = CjYj H(Yj), where Cj are the corresponding
coupling coefficients, H(Y) is the step function, and Y1 = y1, Y2 = −y1, Y3 = y3, and
Y4 = −y3 from (1). The parameters k j, cj, wj1, wj2, bj, hj, and gj control the rest state, the
excitability, the duration of the action potential, the excitation threshold, and the excited
state of each oscillator.

The net ECG(t) waveform is calculated as a composition of muscle electrical responses
in the following way:

ECG(t) = z0 + α1z1 − α2z2 + α3z3 + α4z4, (3)

where z0 is the baseline value of ECG(t), and α1 . . . α4 are the weighting coefficients for
each lead, which are given in [37].

It is worth saying that this model can reproduce several well-known rhythm dis-
orders, such as tachycardia, bradycardia, complete SA–AV block, and AV–HP block, by
implementing the parameter values reported in [41].

2.1.2. Reaction–Diffusion Model Spatially Discretized

Recently, a model based on a discretized reaction–diffusion system to reproduce elec-
trocardiograms from healthy hearts and various rhythm disorders was introduced [38].
Since the model presents chaotic behavior, it was associated with ventricular fibrillation,
which arises from a normal rhythm through the so-called Ruelle–Takens–Newhouse sce-
nario [49], as experimental studies suggest [50,51].

The model comprises a set of three nonlinear oscillators obtained from the spatial
discretization of the BVAM model [52], whose variables simulate the main pacemakers in
the heart. The model consists of the following ordinary differential equations:

ẋ1 = x1 − x2 − Cx1x2 − x1x2
2,

ẋ2 = Hx1 − 3x2 + Cx1x2 + x1x2
2 + β(x4 − x2),

ẋ3 = x3 − x4 − Cx3x4 − x3x4
2,

ẋ4 = Hx3 − 3x4 + Cx3x4 + x3x4
2 + 2β(x2 − x4).

(4)



Sensors 2022, 22, 5714 4 of 19

Here, H and C are parameters controlling the network’s dynamical behavior, and β
is the local interaction between oscillators. ECG waveforms can be generated by a linear
mixing of the variables xi, as follows:

ECG(t) = K1x1 + K2x2 + K3x3 + K4x4. (5)

Sinus rhythm, sinus/ventricular tachycardia, atrial/ventricular flutter, and ventricular
fibrillation can be reproduced by varying the parameters H, C, and Ki as described in [38].

2.1.3. Ring of Three-Coupled Oscillators

A relatively old idea was to consider the heart as a system of nonlinear coupled
oscillators. One of the pioneering studies was developed by Van der Pol (VdP) and Van
der Mark (VdM) [53]. In [39], a model is proposed consisting of three modified VdP
oscillators [43–45] that represent the main pacemakers in the heart. This model consists of
six ordinary differential equations coupled with time delays:

ẋ1 = x2,

ẋ2 = −aSAx2
(
x1 − wSA1

)(
x1 − wSA2

)
+ ρSA sin(ωSAt)

−x1(x1 − dSA)(x1 − eSA)− kSA−AV

(
x1 − xτSA−AV

3

)
−kSA−HP

(
x1 − xτSA−HP

5

)
,

ẋ3 = x4,

ẋ4 = −aAV x4
(
x3 − wAV1

)(
x3 − wAV2

)
+ ρAV sin(ωAV t)

−x3(x3 − dAV)(x3 − eAV)− kAV−SA

(
x3 − xτAV−SA

1

)
−kAV−HP

(
x3 − xτAV−HP

5

)
,

ẋ5 = x6,

ẋ6 = −aHPx6
(
x5 − wHP1

)(
x5 − wHP2

)
+ ρHP sin(ωHPt)

−x5(x5 − dHP)(x5 − eHP)− kHP−SA

(
x5 − xτHP−SA

1

)
−kHP−AV

(
x5 − xτHP−AV

3

)
.

(6)

The terms anode, wnodei
, dnode, and enode are the parameters of each oscillator, where the

index i = 1, 2 and node corresponds to SA, AV, and HP nodes. kSA−AV , kSA−HP, kAV−SA,
kAV−HP, kHP−SA, and kHP−AV denote the particular coupling constant for each pacemaker.
The transport delay terms are given by τSA−AV , τSA−HP, τAV−SA, τAV−HP, τHP−SA, and
τHP−AV . The amplitudes and frequencies of the periodic driving terms are ρSA, ρAV , ρHP
and ωSA, ωAV , ωHP, respectively.

The ECG waveforms are obtained from a linear combination of the variables:

ECG(t) = (α0 + α1x1 + α3x3 + α5x5)βG, (7)

where βG is a scaling factor
The parameter values used as reference for reproducing sinus rhythm, ventricular

flutter, bradycardia and ventricular fibrillation are suggested in [39].

2.1.4. Extended Dynamical Model Based On a Quasi-Periodic Motion

Sayadi et al. [40] developed a Gaussian wave-based state-space to reproduce the
temporal dynamics of the ECG waveform, based on a modification of the model proposed
in [54]. They showed that their model may be effectively used for generating synthetic ECG
waveforms, as well as characteristic waves, such as the atrial and ventricular complexes,
i.e., P, QRS, and T.
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Assuming the presence of three distinct characteristic waves corresponding to the P wave,
QRS complex, and T wave, the ECG waveform is divided into three coupled components,
each related to a specific portion of the heart cycle. The proposed mathematical model is:

ẋ = αx−ωy,

ẏ = αy−ωx,

Ṗ = −∑i∈{P− ,P+} ai∆θie

(
−

∆θ2
i

2b2
i

)
− (P− P0),

Ċ = −∑i∈{Q,R,S} ai∆θie

(
−

∆θ2
i

2b2
i

)
− (C− C0),

Ṫ = −∑i∈{T− ,T+} ai∆θie

(
−

∆θ2
i

2b2
i

)
− (T − T0),

(8)

where ai, bi and θi are the parameters of the Gaussian kernels for each characteristic wave-
form. P, C, and T represent the P-wave, the QRS complex, and the T-wave, respectively,
and the +/− superscripts in P and T denote the two Gaussian waves used to handle
asymmetries. P0, C0, and T0 are the baseline values, which are assumed to be coupled to
the respiratory frequency fr, using:

P0(t) = C0(t) = T0(t) = A sin (2π frt), (9)

The model has seven events (P−, P+, Q, R, S, T−, T+), that act as push–pulls in the
z-direction as the corresponding trajectory passes around the unit limit cycle in the (x, y)
plane. To simulate the quasi-periodicity of the cardiac cycle, the time dependent angular
frequency of motion around the limit cycle is obtained by applying the same spectral
estimation strategy as in [54], where, in that reference, ai were replaced by ai =

αi
b2

i
. Finally,

the synthetic ECG is obtained as follows:

ECG(t) = P(t) + C(t) + T(t). (10)

Since the model (8) has a large number of free parameters, it is possible to control
the morphological features of the synthetic ECG as described in [40]. This feature allows
abnormal morphological changes and several pathological conditions.

In what follows, the main components of the proposed ECG patient simulator are
described, that is, the electronic circuits (hardware) and the main algorithms used to solve
the mathematical models and display results (software).

2.2. Hardware

The proposed electronic circuit of the ECG patient simulator is shown in Figure 1. The
hardware comprises two 32-bit microcontrollers (MCU), manufactured by ST Electronics with
series STM32F401CCU6 and STM32F103C8T6; digital-to-analog converters (DAC) MCP4921;
general-purpose operational amplifiers (OPAMP) LF353; and a Wye resistor network.

The STM32F401CCU6 is a low-cost, high-performance microcontroller of the family
ARM Cortex-M4 Cores, which operates at 84 MHz and includes standard communication
peripherals, such as SPI, I2C, USB, USART, and CAN. It also incorporates a single-precision
floating-point unit, useful for performing calculations in short timing, a set of digital signal
processing instructions, and two analog-to-digital converters. This microcontroller is the
central core of the proposed ECG patient simulator, responsible for numerically solving, in
real-time, the mathematical models and for interfacing via SPI protocol with nine 12-bit
DACs, as shown in Figure 1a. These DACS are used to produce a full 12-lead ECG profile,
i.e., precordial leads and bipolar and augmented limb leads. We configure the DACs to
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operate with an external voltage reference and a clock frequency up to 20 MHz provided by
the MCU. A stabilized DC power supply provides the required external voltage reference
(+5 V) to the DACs.

Figure 1. Electronic circuit of the ECG patient simulator. Schematics for (a) the STM32F401CCU6
microcontroller, managing the generation of ECG waveforms; (b) the STM32F103C8T6 microcon-
troller, driving the communication protocol with the TFT LCD touch screen; (c) digital-to-analog
conversion and amplitude regulation of synthetic ECG waveforms; and (d) Wye resistor network
used to generate electrical potentials from limb electrodes.

Our ECG patient simulator implements a 320 × 240-pixel color TFT LCD touch screen,
which provides a friendly graphical user interface (GUI) to select mathematical models,
cardiac rhythms, and parameters. By using a microcontroller STMF103C8T6 operating at
72 MHz and belonging to the ARM Cortex-M3 Core family, we can control the pixels on
the LCD screen and scan messages from the touch screen through a parallel bus and two
resistive terminals, respectively (see Figure 1b). Information scanned from the TFT touch
screen by the slave MCU (STMF103C8T6) is sent to the master MCU (STM32F401CCU6)
via SPI protocol. These data allow us to specify the mathematical model and cardiac
rhythm that will be solved numerically in the master MCU. The output ECG waveforms
are converted to a quasi-analog signal by using DACs. Since the DAC operates voltages on
the order of millivolts, the internal noise may adversely affect its performance. To aleviate
this, we first include a bypass capacitor to minimize the effect of noise sources on signal
integrity, and second, we generate ECG waveforms with amplitudes ten times greater
than real ECG amplitudes, including offset levels that simulate baselines. In addition, to
simulate ECG waveforms with physiologically consistent amplitudes, the output signals of
the converters are passed through a non-inverting amplifier stage, encompassing general-
purpose operational amplifiers and resistors (R1, R2, Rg, and R f ) for producing a differential
output signal, as described in Figure 1c. This amplifier provides low offset voltage and low
noise. With this design, we can produce ECG waveforms within the range of 0.5 mV to
4 mV with low noise and minimum offset effects.

While the discretized reaction–diffusion model [38], the ring of three coupled oscilla-
tors [39], and the model based on a quasiperiodic motion [40] can reproduce only standard
Einthoven lead II, the network of heterogeneous oscillators [37] can produce a realistic
12-lead ECG profile. Typically, cardiologists place six electrodes on the patient’s chest and
four on the limbs to obtain a 12-lead electrocardiogram, including three bipolar limb leads
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(Lead I, I I, and I I I), three augmented limb leads (aVL, aVF, and aVR), and six precordial
leads (V1–V6) ([3], Chapter 12).

The electrodes placed on the right arm (RA), left arm (LA), and left leg (LL) form
an equilateral triangle known as Einthoven’s triangle and give place to the bipolar limb
leads. The three bipolar limb leads in Einthoven’s triangle, denoted by I, I I and I I I, can be
obtained by Equation (11) and satisfy the relationship I I = I + I I I:

I = LA− RA,

I I = LL− RA, (11)

I I I = LL− LA.

The augmented limb leads and precordial leads are the electrical potential differences
between physical and virtual electrodes [55]. For the augmented limb leads aVF, aVL, and
aVR, the physical electrodes correspond to RA, LA, and LL, and the virtual electrode is the
so-called Goldberger’s central terminal, whose potential is the mean voltage of two limb
electrodes that remain when an electrode is selected. In this way, augmented limb leads
can be written as functions of the physical electrodes RA, LA, and LL as follows:

aVR = RA− 1
2
(LA + LL),

aVL = LA− 1
2
(RA + LL), (12)

aVF = LL− 1
2
(RA + LA).

Typically, patient monitoring systems, such as electrocardiographs, derive the bipolar
and augmented limb leads from the limb electrodes. In this regard, our ECG patient
simulator solely generates these three ground-referenced electrical potentials to obtain the
six first leads: I, I I, I I I, aVL, aVR, and aVF. As shown in Figure 1d, we implement a Wye
resistor network to satisfy Equations (11) and (12). The voltages of each terminal in the
Wye connection are supplied by three DACs with series MCP4921.

Precordial leads, labeled by V1, V2,. . .,V6, are unipolar potentials referenced to a
common electrode known as the Wilson central terminal. This terminal is a theoretical
point computed by the mean voltage of the limb electrodes. By Kirchhoff’s laws, the sum
of the electrical potentials in the limb electrodes is zero. So, the Wilson terminal works as
the reference point for the six electrodes placed on the chest. In our electronic device, the
Wilson center was set to zero, allowing us to directly reproduce the precordial leads by
using ground-referenced DACs.

The described ECG patient simulator cannot only generate a full 12lLead profile
by numerically integrating the extended heterogeneous oscillator model of the cardiac
conduction system but it can also produce a single lead, specifically the standard Einthoven
lead II. The user can select the mathematical model in order to specify the arrhythmia
through the TFT touch LCD display.

2.3. Software

The algorithms embedded in the STM32F401CCU6 and STM32F103C8T6 microcon-
trollers are described in what follows. Figure 2i shows the flowchart for both microcon-
trollers. For an easy configuration of the STM32F401CCU6 and STM32F103C8T6 micro-
controllers, we use STM32 Cube MX and STM32 Cube IDE as integrated development
environments (IDE). Both of them include a graphical tool that allows setting peripherals,
clock, and general-purpose inputs/outputs.

The STM32F103C8T6 manages the user interface (shown in Figure 2ii) in the TFT
LCD Screen via an 8-bit parallel protocol and reads the LCD’s resistive touch panel using
two analog-to-digital channels. This MCU generates a configuration word from the data
introduced by users through the GUI shown in Figure 2ii, whose screens are related to:
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(a) model selection, (b) arrhythmia selection, and (e) parameter settings. It should be noted
that we have preloaded the parameter values for each rhythm so that the user does not
have to introduce parameters one by one. This allows them to easily choose a particular
ECG waveform through the graphic interface (model selection and arrhythmia selection
menus). However, the proposed system can be set by individually changing the parameter
values to explore different conditions through the parameter settings menu. The graphical
interface also includes some controls to play or pause the generation of ECG waveforms, as
displayed in Figure 2ii(c,d). To interface with the LCD display, bits A8–A15 from port A
and bits B3–B5 and B12–B15 from port B are configured as push–pull outputs at maximum
speed. The STM32F401CCU6 and STM32F103C8T6 microcontrollers communicate with
each other via the SPI peripheral. Here, the STM32F401CCU6 microcontroller is a slave
transmitter, whose bits A7, A5, and B4 from port A and port B are reserved for MOSI,
SCK, and MISO signals, respectively. While Channels IN0 and IN1 from analog-to-digital
converter 1 are configured to read Vx and Vy from the touch interface, bit A6 from port A is
set as a push–pull output at maximum speed for the play/pause instruction.

(i) (ii)

Figure 2. (i) Flowchart of the ECG patient simulator for both microcontrollers, STM32F401CCU6
and STM32F103C8T6. (ii) Graphical user interface, where different screens to interact with the user
were implemented: (a) model selection, (b) arrhythmia selection, (c,d) play/pause generation of ECG
waveforms, and (e) parameter settings.

The STM32F401CCU6 microcontroller receives and initializes the user-defined model
parameters, which are encoded in the configuration bits provided by the STM32F103C8T6
microcontroller. From this information, STM32F401CCU6 solves the selected mathemat-
ical model through the fourth-order Runge–Kutta (RK4) method. We have included the
numerical method within a looping function, which checks, in each iteration, the state of
the play/pause bit coming from the STM32F103C8T6 microcontroller. The integration step
used for solving each model is obtained by measuring the computing time of one iteration
plus the time that the MCU takes to send data to the DAC via the SPI peripheral. It is
important to say that two of the four models integrated into the ECG patient simulator
include time delays in the coupling, which requires solving a set of delayed differential
equations. To overcome this issue, we create an array that buffers a certain number of
samples from the delayed signal. The amount of samples depends on the ratio of the
transport delay terms and the integration step.
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Finally, to individually control each MCP4921 DAC’s, Bits A8–A15 from port A and
bits B12–B15 from port B are configured as chip select and bit A6 as the latch. The
STM32F401CCU6 microcontroller implements an SPI1 peripheral that works as a half-
duplex master at 18 MBits/s. To do this, the APB2 Bus is set to 36 MHz, reserving bits A7,
A5, and B4 from A and B ports for the MOSI, SCK, and MISO signals, respectively. Bit A8
from port A is configured as an input for the play/pause instruction.

3. Results

The microcontroller and passive electronic components were mounted on a two-
layered printed circuit board (PCB) to avoid faulty contacts and poor stability. The whole
PCB was designed in EasyEDA Software. The ECG patient simulator implemented in
the PCB is presented in Figure 3i. The microcontrollers that manage the communication
protocol with the TFT LCD touch screen (red square) and the generation of ECG waveforms
are indicated with cyan and gray squares, respectively. The green and orange squares
indicate the digital-to-analog conversion stage and the output amplifiers, respectively. In
the same Figure, the synthetic ECG waveforms are provided through the connector marked
with a purple square. Figure 3ii shows the whole electronic circuit, i.e., the core for the
generation of ECG signals and the TFT LCD touch screen.

(i) (iii)

(ii)

Figure 3. (i) Electronic circuit of the proposed ECG patient simulator. (ii) Electronic circuit including
the TFT LCD touch screen. (iii) Normal synthetic ECG waveforms obtained from the ECG patient
simulator for different mathematical models: (a) network of heterogeneous oscillators (3), (b) dis-
cretized reaction–diffusion model (5), (c) ring of three coupled oscillators (7), and (d) model based on
a quasiperiodic motion (10).

Normal synthetic ECG signals generated by the proposed ECG patient simulator are
presented in Figure 3iii. Table 1 shows the parameter values for reproduce these cardiac
rhythms. We obtain a full 12-lead ECG profile by integrating the heterogeneous oscillator
model of the cardiac conduction system as shown in Figure 3iii(a). An ECG waveform
(standard Einthoven lead II) generated with the discretized BVAM model is shown in
Figure 3iii(b). The normal ECG waveforms produced by the model based on a ring of three
coupled oscillators and the model based on a quasiperiodic motion are shown in Figure
3iii(c,d), respectively. Notably, the ECG signals presented in Figure 3iii(b,d) exhibit the
characteristic peaks and troughs of the ECG waveform, i.e., the P wave, QRS complex, and T
wave. These events are associated with the successive atrial depolarization/repolarization
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and ventricular depolarization/repolarization, which occurs with every heartbeat. It should
be said that the discretized reaction–diffusion model and the ring of three coupled oscilla-
tors can only reproduce general features of the normal ECG, though they are capable of
generating different arrhythmias effectively. On the contrary, the network of heterogeneous
oscillators and the model based on a quasiperiodic motion incorporate substantial details
in the simulated signals that lead to realistic ECG waveforms, but the complexity of the
models increases.

Table 1. Parameter values for reproducing normal rhythms using different models. In the model
based on a quasiperiodic motion, the parameters of the Gaussian kernels are expressed by the values
of (ai, bi, θi) for each characteristic waveform.

Pathology Parameters

Network of heterogeneous
oscillators

a1 = 40, a2 = a3 = 50, u = 0.69, KSA−AV = KAV−HP = f1 = 22, f2 = 8.4,
f3 = 1.5, d = 3, e1 = 3.5, e2 = 5, e3 = 12, τSA−AV = τAV−HP = 0.092,

k1 = 2× 103, k2 = 1× 102, k3 = 1× 104, k4 = 2× 103, c1 = 0.26,
c2 = c3 = 0.12, c4 = 0.1, b1 = b2 = b4 = 0, b3 = 0.015, g1 = 0.4,

g2 = g3 = 0.09, g4 = 0.1, h1 = 0.004, h2 = h3 = h4 = 0.008, w11 = 0.13,
w12 = 1.0, w21 = w31 = 0.12, w22 = w32 = 1.1, w41 = 0.22, w42 = 0.8,
C1 = 4× 10−5, C2 = −4× 10−5, C3 = 9× 10−5, C4 = −6× 10−5 and

z0 = 0.2

Discretized reaction–diffusion
model

C = 1.35, β = 4, H = 3, K1 = −0.024, K2 = 0.0216, K3 = −0.0012,
K4 = 0.12 and Γt = 7.

Ring of three coupled oscillators

α0 = 1, α1 = 0.1, α3 = 0.05, α5 = 0.4, αSA = 3, WSA1 = 0.2, WSA2 = −1.9,
dSA = 3, αAV = 3, WAV1 = 0.1, WAV2 = −0.1, dAV = 3, eAV = 3,
τSA−AV = τAV−HP = τSA−HP = 0, τHP−SA = 0, τAV−SAz = 0.8,

τHP−SA = 0, kSA−AV = kAV−HP = kSA−HP = 0, kHP−SA = 0, ρSA = 1,
ρAV = 1, ρHP = 20, kHP−SA = 0, eSA = 4.5, kAV−SA = 5, kHP−AV = 20,

WSAWAV = WHP = 0, βT = 16 and βG = 0.0012.

Model based on a quasiperiodic
motion

P+(1.2, 0.25,−π/3), P−(0, 0.25,−π/3), Q(−0.5, 0.1,−π/12),
R(30, 0.1, 0), S(−7.5, 0.1, π/12), T+(0.75, 0.45, π/2) and T−(0, 0.75, π/2).

Since the network of heterogeneous oscillators is the sole model that reproduces
a full 12-lead ECG profile, we assess it in a commercial electrocardiograph, which is a
monitoring device consisting of an interpretive 12-channel electrocardiogram machine,
with series CardioCare 2000. The monitoring equipment recognizes the synthetic ECG
signals effectively, as shown in Figure 4.

3.1. Rhythm Disorders

In what follows, we show different arrhythmia that the proposed system can reproduce.
We would like to emphasize that in most models, the parameter values for the arrhythmias
are the same as for the normal state. So, in the subsequent sections, we will only specify
those parameters that change.

3.1.1. Network of Heterogeneous Oscillators

To validate the proposed ECG simulator, we first reproduce two well-known rhythm
disorders, complete SA–AV and AV–HP blocks, by integrating the heterogeneous oscillator
model of the cardiac conduction system (3). The results are shown in Figure 5. A complete
SA–AV block indicates the loss of communication between the SA node and the AV node.
Here, the SA node cannot control the heart rate, leading to a lack of coordination of the
depolarization/repolarization processes in the atria and ventricles. We reproduced the
complete SA–AV block by setting the coupling constant KSA−AV = 0. In contrast, for the
complete AV–HP block (KAV−HP = 0), the HP complex acts independently at its own rate
and the SA and AV nodes operate coupled at a normal rhythm. Consequently, atria work
normally, and ventricles take action at a slow rate.
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Figure 4. Synthetic 12-lead ECG profile tested using an interpretive 12 channel electrocardiogram
machine with series CardioCare 2000.

Figure 5. ECG waveforms obtained with the heterogeneous oscillator model of the cardiac conduction
system: (a) Complete SA–AV block and (b) Complete AV–HP block.

3.1.2. Reaction–Diffusion Model Spatially Discretized

Figure 6 shows four arrhythmias generated by the discretized reaction–diffusion model:
(a) sinus tachycardia, (b) atrial flutter, (c) ventricular tachycardia, and (d) ventricular flutter. The
corresponding parameter values are presented in Table 2. Sinus tachycardia is a cardiac rhythm
characterized by a faster-than-usual heartbeat. Similarly, atrial flutter refers to a condition in
which the upper chambers beat too quickly. However, the former condition is generally not
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dangerous, but the second one produces insufficient blood pumping, which can lead to heart
failure [56,57]. Lethal cardiac arrhythmias frequently result from reentry mechanisms; specifi-
cally, ventricular tachycardia and ventricular flutter are re-entrant ventricular tachyarrhythmias
that can progress to ventricular fibrillation. Ventricular tachycardia occurs when the lower
chamber of the heart (ventricles) beats faster than 120 beats/min, whereas ventricular flutter is a
rapid organized rhythm, between 250 and 300 beats/min, characterized by a sine wave pattern
on the electrocardiogram without any identifiable QRS complexes or T waves [58,59].

Figure 6. ECG waveforms obtained with the reaction-diffusion model: (a) Sinus Tachycardia,
(b) Atrial Flutter, (c) Ventricular Tachycardia, and (d) Ventricular Flutter.
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Table 2. Parameter values for the reaction–diffusion model.

Pathology Parameters

Sinus Tachycardia H = 2.848, K1 = 0, K2 = −0.1, K3 = 0, K4 = 0, Γt = 21
Atrial Flutter H = 1.52, K1 = 0.068, K2 = 0.028, K3 = 0.024, K4 = 0.012, Γt = 13

Ventricular Tachycardia H = 2.178, K1 = 0, K2 = 0, K3 = 0, K4 = −0.1, Γt = 21
Ventricular Flutter H = 2.178, K1 = 0.1, K2 = −0.02, K3 = −0.01, K4 = 0, Γt = 13

3.1.3. Ring of Three-Coupled Oscillators

By integrating the model (6) in the proposed device, we reproduce three pathological
rhythms: sinus bradycardia, atrial flutter, and ventricular fibrillation, which are shown in
Figure 7. Sinus bradycardia is a common heart rhythm defined by a slow, regular heartbeat
of fewer than 60 beats/min [56]. In contrast, ventricular fibrillation is a severe and totally
disorganized rhythm that leads to death if no immediate medical attention is provided [59].
Interestingly, ventricular fibrillation has been associated with chaotic behavior; this fact has
motivated the investigation and development of new devices to control it. In this context,
ECG simulators have provided a significant tool to design and test these devices [60–62].
The parameter values corresponding to the three pathologies are shown in Table 3.

Table 3. Parameter values for the ring of three-coupled oscillators.

Pathology Parameters

Ventricular Flutter eSA = 4.5, kAV−SA = 0, kHP−AV = 20, WSA = 0, WAV = 0, WHP = 0,
βT = 8 and βG = 0.0012

Sinus Bradycardia eSA = 4.5, kAV−SA = 5, kHP−AV = 15, WSA = 0, WAV = 0, WHP = 0,
βT = 8 and βG = 0.0009

Ventricular Fibrillation eSA = 6, kAV−SA = 5, kHP−AV = 20, WSA = 7.33, WAV = 7.33,
WHP = 7.33, βT = 16 and βG = 0.0012

3.1.4. Extended Dynamical Model Based on a Quasi-Periodic Motion

In Figure 8, arrhythmias generated with the extended dynamical model based on
a quasi-periodic motion are shown. These include sinus bradycardia, sinus tachycardia,
ventricular flutter, atrial fibrillation, and ventricular tachycardia. The corresponding pa-
rameter values are presented in Table 4. As mentioned above, sinus bradycardia and
sinus tachycardia are not serious arrhythmias, in fact, they often do not require treatment.
However, there are abnormalities of cardiac rhythm that are potentially dangerous. For
example, atrial fibrillation causes irregular heartbeats that begin in the upper chambers
and can produce blood clots, limiting the ability to pump blood into the body.

Table 4. Parameter values for the extended dynamical model based on a quasiperiodic motion. The
parameters of the Gaussian kernels are expressed by the values of (ai, bi, θi) for each characteris-
tic waveform.

Waves Sinus Bradycardia Sinus Tachycardia Ventricular
Flutter Atrial Fibrillation Ventricular

Tachycardia

P− (0.7, 0.2,−3π/8) (0.7, 0.2,−3π/7) (0, 0.1,−π/6) (0.7, 0.12,−5π/7) (1, 0.2, 10π/13)
P+ (0.8, 0.1,−π/3) (0.8, 0.1,−π/3) (0, 0.1,−2π/3) (0.9, 0.13,−π/2) (1, 0.1,−2π/3)
Q (−1, 0.1,−π/13) (−7, 0.1,−π/13) (0, 0.1,−π/12) (0.6, 0.12,−π/4) (−12, 0.2,−π/3)
R (20, 0.1, 0) (20, 0.1, 0) (20, 0.6,−π/2) (18, 0.1, 0) (1, 0.3, 0)
S (−9.5, 0.1, π/15) (−9.5, 0.1, π/17) (−20, 0.6, π/2) (−0.1, 0.05,−π/30) (3, 0.4, 2π/11)

T− (0.27, 0.4, 2π/5) (0.27, 0.4, π/2) (0, 0.1, 3π/8) (0.62, 0.15, π/4) (5, 0.5, π/2)
T+ (0.15, 0.55, 4π/7) (0.15, 0.55, 4π/7) (0, 0.1, 5π/8) (0.55, 0.17, 7π/11) (3, 0.45, 2π/23)

We would like to stress that the proposed ECG simulator can generate a wide range of
pathological conditions, so it provides a promising platform not only to train arrhythmia
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classifiers and detectors [63,64] but also to assess ECG signal processing software. Signal
denoising is a remarkable example where synthetic waveforms can help attenuate the noise
of real ECG signals by providing a reference profile to wave detector [65].

Figure 7. ECG waveforms obtained with the ring of three-coupled oscillators model: (a) Sinus
Bradycardia, (b) Atrial Flutter, and (c) Ventricular Fibrillation.
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Figure 8. ECG waveforms obtained with the extended dynamical model based on a quasi-periodic
motion: (a) Bradycardia, (b) Tachycardia, (c) Ventricular Flutter, (d) Atrial Fibrillation, and (e) Ven-
tricular Tachycardia.
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4. Discussion

In the last years, synthetic ECG patient simulators have been developed to test, cali-
brate, and assess electrocardiograph equipment and ECG waveform processing software.
Most of these simulators have shortcomings in the amplitudes, range, waveforms, and
time-intervals of the produced signals. To overcome these shortcomings, and in light of
the importance of mathematical modeling for the understanding of complex biological
processes involved in the cardiac conduction system, we introduced a versatile, low-cost,
and tunable electronic device implementing an ECG patient simulator based on four math-
ematical models to generate realistic ECG waveforms within a broad range of possibilities.
It is worth mentioning that the ECG profiles generated by the models incorporated in our
ECG patient simulator were already compared with clinical registers in the corresponding
works where they were published. In particular, the network of heterogeneous oscilla-
tors and the model based on a quasiperiodic motion incorporate substantial details in
the simulated ECG signals that lead to realistic waveforms. Furthermore, the discretized
reaction–diffusion model and the ring of three coupled oscillators can generate different ar-
rhythmias effectively by changing a few parameters. One of the most significant features of
our ECG patient simulator is the possibility of controlling parameters of the mathematical
models through an interactive and friendly graphic interface. In addition, the proposed
ECG patient simulator is able to produce a full 12-lead ECG profile, which can be tested
in patient monitoring systems. We are certain that our proposal constitutes a promising
platform for testing medical equipment and biological signal processing algorithms, as well
as a powerful tool for medical education and academic research. The proposed system can
be considered as an alternative to calibrate, test, and certify ECG devices in order to confirm
the level of confidence in the manufacturers’ specifications. Future research directions
could be the training and evaluation of automated diagnosis systems and the development
of a cardiac defibrillator to control, in an efficient way, irregular and chaotic heartbeats
associated with ventricular fibrillation.
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RK4 Fourth-order Runge-Kutta
DAC Digital-to-analog converter
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SA Sinoatrial
AV Atrioventricular
HP His–Purkinje
BVAM Barrio–Varea–Aragon–Maini
VdP Van der Pol
VdM Van der Mark
MCU Microcontrollers
GUI Graphical user interface
USB Universal serial bus
SPI Serial peripheral interface
I2C Inter-integrated circuit
USART Universal synchronous and asynchronous serial receiver and transmitter
CAN Controller area network
TFT LCD Thin-film-transistor liquid-crystal display
DC Direct current
SCK Serial clock
MOSI Master out slave in
MISO Master in slave out
PCB Printed circuit board
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