Four-Line C2*/CH* Optical Sensor for Chemiluminescence Based Imaging of Flame Stoichiometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensor Design
2.2. Experimental Facility and Method
2.3. Data Processing
3. Results
3.1. Signal-to-Noise Ratio (SNR)
3.2. Calibration of C2*/CH* Intensity Ratio to Equivalence Ratio
3.3. Local Equivalence-Ratio Mapping
3.4. Radical-Species Profiles in Progress Variable Space
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Turns, S. An Introduction To Combustion: Concepts and Applications, 2nd ed.; McGraw-Hill: New York, NY, USA, 2000. [Google Scholar]
- Guen Lee, J.; Kim, K.; Santavicca, D.A. Measurement of Equivalence Ratio Fluctuation and Its Effect on Heat Release During Unstable Combustion. Proc. Combust. Inst. 2000, 28, 415–421. [Google Scholar] [CrossRef]
- Turns, S.R.; Myhr, F.H.; Bandaru, R.V.; Maund, E.R. Oxides of Nitrogen Emissions from Turbulent Jet Flames: Part II-Fuel Dilution and Partial Premixing Effects. Combust. Flame 1993, 93, 255–269. [Google Scholar] [CrossRef]
- Turns, S.R. Understanding NOx Formation in Nonpremixed Flames: Experiments and Modeling. Proc. Combust. Inst. 1995, 21, 361–385. [Google Scholar] [CrossRef]
- Docquier, N.; Candel, S. Combustion Control and Sensors: A Review. Prog. Energy Combust. Sci. 2002, 28, 107–150. [Google Scholar] [CrossRef]
- Gaydon, A.G. The Spectroscopy of Flames, 2nd ed.; Springer: Dordrecht, The Netherlands, 1974. [Google Scholar]
- Panoutsos, C.S.; Hardalupas, Y.; Taylor, A.M.K.P. Numerical Evaluation of Equivalence Ratio Measurement Using OH* and CH* Chemiluminescence in Premixed and Non-Premixed Methane-Air Flames. Combust. Flame 2009, 156, 273–291. [Google Scholar] [CrossRef] [Green Version]
- Kojima, J.; Ikeda, Y.; Nakajima, T. Basic Aspects of OH(A), CH(A), and C2(d) Chemiluminescence in the Reaction Zone of Laminar Methane-Air Premixed Flames. Combust. Flame 2005, 140, 34–45. [Google Scholar] [CrossRef]
- Ballester, J.; García-Armingol, T. Diagnostic Techniques for the Monitoring and Control of Practical Flames. Prog. Energy Combust. Sci. 2010, 36, 375–411. [Google Scholar] [CrossRef]
- Pearse, R.W.B.; Gaydon, A.G. The Identification of Molecular Spectra, 4th ed.; Chapman and Hall: New York, NY, USA, 1976. [Google Scholar]
- Clark, T.P. Studies of OH, CO, CH, AND C2 Radiation from Laminar and Turbulent Propane-Air and Ethylene-Air Flames; National Advisory Committee for Aeronautics: Moffett Field, CA, USA, 1958. [Google Scholar]
- Guyot, D.; Guethe, F.; Schuermans, B.; Lacarelle, A.; Paschereit, C.O. CH*/OH* Chemiluminescence Response of an Atmospheric Premixed Flame under Varying Operating Conditions. In Proceedings of the ASME Turbo Expo, Hong Kong, China, 2–4 December 2010; Volume 2, pp. 933–944. [Google Scholar]
- Samaniego, J.-M.; Egolfopoulos, F.N.; Bowman, C.T. CO2* Chemiluminescence in Premixed Flames. Combust. Sci. Technol. 1995, 109, 183–203. [Google Scholar] [CrossRef]
- Itoh, H.; Hommo, Y.; Song, J.; Gomi, T. An Instantaneous Measuring Method of Fuel-Air Ratio by Luminous Intensity of Radicals. Trans. Jpn. Soc. Mech. Eng. Ser. B 1986, 52, 3362–3371. [Google Scholar] [CrossRef] [Green Version]
- Kamal, M.M. Two-Line (CH∗/CO2∗) Chemiluminescence Technique for Equivalence Ratio Mapping in Turbulent Stratified Flames. Energy 2020, 192, 116485. [Google Scholar] [CrossRef]
- Yang, J.; Gong, Y.; Wei, J.; Guo, Q.; Wang, F.; Yu, G. Chemiluminescence Diagnosis of Oxygen/Fuel Ratio in Fuel-Rich Jet Diffusion Flames. Fuel Process. Technol. 2022, 232, 107284. [Google Scholar] [CrossRef]
- Ballester, J.; Hernández, R.; Sanz, A.; Smolarz, A.; Barroso, J.; Pina, A. Chemiluminescence Monitoring in Premixed Flames of Natural Gas and Its Blends with Hydrogen. Proc. Combust. Inst. 2009, 32, 2983–2991. [Google Scholar] [CrossRef]
- Nau, P.; Krüger, J.; Lackner, A.; Letzgus, M.; Brockhinke, A. On the Quantification of OH*, CH*, and C2* Chemiluminescence in Flames. Appl. Phys. B Lasers Opt. 2012, 107, 551–559. [Google Scholar] [CrossRef]
- Higgins, B.; Mcquay, M.Q.; Lacas, F.; Candel, S. An Experimental Study on the Effect of Pressure and Strain Rate on CH Chemiluminescence of Premixed Fuel-Lean Methane/Air Flames. Fuel 2001, 80, 1583–1591. [Google Scholar] [CrossRef]
- Ding, Y.; Durox, D.; Darabiha, N.; Schuller, T. Chemiluminescence of Burner-Stabilized Premixed Laminar Flames. Combust. Sci. Technol. 2019, 191, 18–42. [Google Scholar] [CrossRef]
- Docquier, N.; Lacas, F.O.; Bastien Candel, S.É. Closed-Loop Equivalence Ratio Control of Premixed Combustors Using Spectrally Resolved Chemiluminescence Measurements. Proc. Combust. Inst. 2002, 29, 139–145. [Google Scholar] [CrossRef]
- Nori, V.N.; Seitzman, J.M. CH* Chemiluminescence Modeling for Combustion Diagnostics. Proc. Combust. Inst. 2009, 32, 895–903. [Google Scholar] [CrossRef]
- Nori, V.N.; Seitzman, J.M. Chemiluminescence Measurements and Modeling in Syngas, Methane and Jet-A Fueled Combustors. In Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 8–11 January 2007. [Google Scholar]
- Cheng, T.S.; Wu, C.Y.; Li, Y.H.; Chao, Y.C. Chemiluminescence Measurements of Local Equivalence Ratio in a Partially Premixed Flame. Combust. Sci. Technol. 2006, 178, 1821–1841. [Google Scholar] [CrossRef]
- Kojima, J.; Ikeda, Y.; Nakajima, T. Spatially Resolved Measurement of OH*, CH*, and C2* Chemiluminescence in the Reaction Zone of Laminar Methane/Air Premixed Flames. Proc. Combust. Inst. 2000, 28, 1757–1764. [Google Scholar] [CrossRef]
- Baumgardner, M.E.; Harvey, J. Analyzing OH*, CH*, and C2* Chemiluminescence of Bifurcating FREI Propane-Air Flames in a Micro Flow Reactor. Combust. Flame 2020, 221, 349–351. [Google Scholar] [CrossRef]
- Ikeda, Y.; Kurahashi, T.; Kawahara, N.; Tomita, E. Temperature Measurements of Laminar Propane/Air Premixed Flame Using Detailed OH* Spectra Intensity Ratio. In Proceedings of the 12th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 12–15 July 2004. [Google Scholar]
- Hardalupas, Y.; Orain, M. Local Measurements of the Time-Dependent Heat Release Rate and Equivalence Ratio Using Chemiluminescent Emission from a Flame. Combust. Flame 2004, 139, 188–207. [Google Scholar] [CrossRef]
- Morales, A.J.; Reyes, J.; Boxx, I.; Ahmed, K.A. The Effects of Turbulence on the Lean Blowout Mechanisms of Bluff-Body Flames. Combust. Inst. 2021, 38, 6317–6325. [Google Scholar] [CrossRef]
- Sellan, D.; Balusamy, S. Topology of Turbulent Premixed and Stratified LPG/Air Flames. Aerosp. Sci. Technol. 2022, 120, 107253. [Google Scholar] [CrossRef]
- Sellan, D.; Balusamy, S. Experimental Study of Swirl-Stabilized Turbulent Premixed and Stratified LPG/Air Flames Using Optical Diagnostics. Exp. Therm. Fluid Sci. 2021, 121, 110281. [Google Scholar] [CrossRef]
- Souflas, K. Experimental Investigation of OH*/CH* Ratio Variations in Turbulent, Disk Stabilized, Lean Propane-Air Flames with Inlet Mixture Preheat and Stratification. Exp. Therm. Fluid Sci. 2022, 136, 110670. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, J.; Wan, M.; Yao, X. OH*and CH*chemiluminescence Characteristics in Low Swirl Methane-Air Flames. AIP Adv. 2020, 10, 055318. [Google Scholar] [CrossRef]
- Karnani, S.; Dunn-Rankin, D. Visualizing CH* Chemiluminescence in Sooting Flames. Combust. Flame 2013, 160, 2275–2278. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, J.; Wan, M.; Zhang, L.; Yao, X. Quantitative Measurement of OH* and CH* Chemiluminescence in Jet Diffusion Flames. ACS Omega 2020, 5, 15922–15930. [Google Scholar] [CrossRef] [PubMed]
- Shim, M.; Noh, K.; Yoon, W. Flame Structure of Methane/Oxygen Shear Coaxial Jet with Velocity Ratio Using High-Speed Imaging and OH*, CH* Chemiluminescence. Acta Astronaut. 2018, 147, 127–132. [Google Scholar] [CrossRef]
- Tautschnig, G.; Hampel, B.; Hirsch, C.; Sattelmayer, T. Experimental Investigation of OH* and CH* Chemiluminesscence under Varying Operating Conditions. In Proceedings of the ASME Turbo Expo, San Antonio, TX, USA, 3–7 June 2013. [Google Scholar]
- Morales, A.J.; Reyes, J.; Joo, P.H.; Boxx, I.; Ahmed, K.A. Pressure Gradient Tailoring Effects on the Mechanisms of Bluff-Body Flame Extinction. Combust. Flame 2020, 215, 224–237. [Google Scholar] [CrossRef]
Φ | Exit Velocity (m/s) | Re | ||
---|---|---|---|---|
0.7 | 7.5 | 0.34 | 25.1 | 21,005 |
0.85 | 7.5 | 0.41 | 25.3 | 21,198 |
1.0 | 7.5 | 0.48 | 25.5 | 21,390 |
1.15 | 7.5 | 0.55 | 25.8 | 21,583 |
1.3 | 7.5 | 0.62 | 26.0 | 21,775 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tonarely, M.E.; Genova, T., Jr.; Morales, A.J.; Micka, D.; Knaus, D.; Ahmed, K.A. Four-Line C2*/CH* Optical Sensor for Chemiluminescence Based Imaging of Flame Stoichiometry. Sensors 2022, 22, 5665. https://doi.org/10.3390/s22155665
Tonarely ME, Genova T Jr., Morales AJ, Micka D, Knaus D, Ahmed KA. Four-Line C2*/CH* Optical Sensor for Chemiluminescence Based Imaging of Flame Stoichiometry. Sensors. 2022; 22(15):5665. https://doi.org/10.3390/s22155665
Chicago/Turabian StyleTonarely, Michael E., Tommy Genova, Jr., Anthony J. Morales, Daniel Micka, Darin Knaus, and Kareem A. Ahmed. 2022. "Four-Line C2*/CH* Optical Sensor for Chemiluminescence Based Imaging of Flame Stoichiometry" Sensors 22, no. 15: 5665. https://doi.org/10.3390/s22155665
APA StyleTonarely, M. E., Genova, T., Jr., Morales, A. J., Micka, D., Knaus, D., & Ahmed, K. A. (2022). Four-Line C2*/CH* Optical Sensor for Chemiluminescence Based Imaging of Flame Stoichiometry. Sensors, 22(15), 5665. https://doi.org/10.3390/s22155665