Design Method for a Wideband Non-Uniformly Spaced Linear Array Using the Modified Reinforcement Learning Algorithm
Abstract
:1. Introduction
2. Antenna Array Model
3. Cost Function
3.1. Cost Function for Narrowband NUSLAs
3.2. Cost Function for Wideband NUSLAs
4. Optimization Algorithm Based on Reinforcement Learning
Algorithm 1 An algorithm for optimizing NUSLA using MORELA. |
Initialization Step Initialize parameters () Generate randomly K parameter vectors ( and ) using Equation (9) for Calculate cost function (8) for and end for Store the best performing parameters ( and ) Update Step for Generate additional K parameter vectors ( and ) using Equation (11) for Calculate the cost function (8) for original ( and ) and sub-environment ( and ) end for Remove the worst K parameter vectors Store the best performing parameters as ( and ) Calculate the K reward vectors using Equation (13) Update the survived K parameter vectors using Equation (12) end for |
5. Simulation Results
5.1. Wideband Symmetric NUSLA
5.2. Wideband Asymmetric NUSLA
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Designed Beam Patterns
References
- Volakis, J.L. Antenna Engineering Handbook; McGraw-Hill Education: New York, NY, USA, 2007. [Google Scholar]
- Stutzman, W.L.; Thiele, G.A. Antenna Theory and Design; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Balanis, C. A Antenna Theory: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Benesty, J.; Cohen, I.; Chen, J. Fundamentals of Signal Enhancement and Array Signal Processing; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Ridwan, M.; Abdo, M.; Jorswieck, E. Design of Non-Uniform Antenna Arrays Using Genetic Algorithm. In Proceedings of the 13th International Conference on Advanced Communication Technology (ICACT2011), Seoul, Korea, 13–16 February 2011; pp. 422–427. [Google Scholar]
- Basu, B.; Mahanti, G. Fire Fly and Artificial Bees Colony Algorithm for Synthesis of Scanned and Broadside Linear Array Antenna. Prog. Electromagn. Res. B 2011, 32, 169–190. [Google Scholar] [CrossRef] [Green Version]
- Ram, G.; Mandal, D.; Kar, R.; Ghoshal, S.P. Optimized Hyper Beamforming of Receiving Linear Antenna Arrays Using Firefly Algorithm. Int. J. Microw. Wirel. Technol. 2014, 6, 181–194. [Google Scholar] [CrossRef]
- Bai, H. Design of Non-Uniform Linear Array via Linear Programming and Particle Swarm Optimization and Studies on Phased Array Calibration. Masters Thesis, University of Massachusetts Amherst, Amherst, MA, USA, 2014. [Google Scholar]
- Sri, K.B.; Rao, N.V. Optimization of SLL of Linear Array Antennas using Enhanced Firefly Algorithm. Int. J. Eng. Res. Appl. 2020, 10, 19–23. [Google Scholar]
- Li, S.; Yang, X.; Ning, L.; Long, T.; Sarkar, T.K. Broadband Constant Beamwidth Beamforming for Suppressing Mainlobe and Sidelobe Interferences. In Proceedings of the 2017 IEEE Radar Conference (RadarConf), Seattle, WA, USA, 8–12 May 2017; pp. 1041–1045. [Google Scholar]
- Liu, M.; Zou, L.; Wang, X. Practical Beamforming Technologies for Wideband Digital Array Radar. Prog. Electromagn. Res. Lett. 2019, 86, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Li, J.Y.; Zhang, L.K.; Yu, X.J.; Qi, Y.X.; Li, D.; Zhou, S.G. A Broadband Wide-Angle Scanning Linear Array Antenna with Suppressed Mutual Coupling for 5G Sub-6G Applications. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 366–370. [Google Scholar] [CrossRef]
- Wang, B.H.; Hui, H.T.; Leong, M.S. Optimal Wideband Beamforming for Uniform Linear Arrays Based on Frequency-Domain MISO System Identification. IEEE Trans. Antennas Propag. 2010, 58, 2580–2587. [Google Scholar] [CrossRef]
- Zhang, W.; Su, T. Reference Beam Pattern Design for Frequency Invariant Beamforming Based on Fast Fourier Transform. Sensors 2016, 16, 1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, T.; Cohen, I.; Berdugo, B.; Yang, Y.; Chen, J. Window-Based Constant Beamwidth Beamformer. Sensors 2019, 19, 2091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Li, R.; Chen, X.; Wei, F.; Shi, X. Wideband Frequency Invariant Array Synthesis Based on Matrix Singular Value Decomposition. Electronics 2021, 10, 2039. [Google Scholar] [CrossRef]
- Murino, V.; Trucco, A.; Regazzoni, C.S. Synthesis of Unequally Spaced Arrays by Simulated Annealing. IEEE Trans. Signal Process. 1996, 44, 119–123. [Google Scholar] [CrossRef] [Green Version]
- Gangwar, V.S.; Singh, A.K.; Singh, S.P. Side Lobe Level Suppression in Randomly Spaced Linear Array Using Genetic Algorithm. In Proceedings of the 2015 IEEE MTT-S International Microwave and RF Conference (IMaRC), India, Hyderabad, 10–12 December 2015; pp. 381–384. [Google Scholar]
- Zaman, M.A.; Abdul Matin, M. Nonuniformly Spaced Linear Antenna Array Design Using Firefly Algorithm. Int. J. Microw. Sci. Technol. 2012, 2012, 256759. [Google Scholar] [CrossRef] [Green Version]
- Miranda, A.V.; Ashwin, P.; Sharan, P.; Gangwar, V.S.; Singh, A.K.; Singh, S.P. An Efficient Synthesis of Unequally Spaced Antenna Array with Electronic Scan Capability Utilizing Particle Swarm Optimization. In Proceedings of the 2017 IEEE MTT-S International Microwave and RF Conference (IMaRC), India, Ahmedabad, 11–13 December 2017; pp. 255–258. [Google Scholar]
- Luo, Z.; Liu, F.; Zou, Z.; Guo, S.; Shen, T. Optimum design of both linear and planar sparse arrays with sidelobe level reduction using salp swarm algorithm. J. Electromagn. Waves Appl. 2021, 35, 690–704. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Zhu, C.; Liu, Q.H. Synthesis of Nonuniformly Spaced Linear Arrays With Frequency-Invariant Patterns by the Generalized Matrix Pencil Methods. IEEE Trans. Antennas Propag. 2015, 63, 1614–1625. [Google Scholar] [CrossRef]
- Gu, P.; Wang, G.; Fan, Z.; Chen, R. Efficient Unitary Matrix Pencil Method for Synthesising Wideband Frequency Patterns of Sparse Linear Arrays. IET Microwaves Antennas Propag. 2018, 12, 1871–1876. [Google Scholar] [CrossRef]
- Van Luyen, T.; Giang, T.V.B. Null-Steering Beamformer Using Bat Algorithm. Appl. Comput. Electromagn. Soc. J. 2018, 33, 23–29. [Google Scholar]
- BouDaher, E.; Hoorfar, A. Comparison of Nature-Inspired Techniques in Design Optimization of Non-Uniformly Spaced Arrays in The Presence of Mutual Coupling. Digit. Signal Process. 2020, 105, 1–19. [Google Scholar] [CrossRef]
- Pradhan, H.; Mangaraj, B.B.; Behera, S.K. Chebyshev-Based Array for Beam Steering and Null Positioning Using Modified Ant Lion Optimization. Int. J. Microw. Wirel. Technol. 2022, 14, 143–157. [Google Scholar] [CrossRef]
- Patidar, H.; Mahanti, G.K.; Muralidharan, R. Quantum Particle Swarm Optimization for Synthesis of Non-Uniformly Spaced Linear Arrays with Broadband Frequency Invariant Pattern. J. Microwaves Optoelectron. Electromagn. Appl. 2017, 16, 602–614. [Google Scholar] [CrossRef] [Green Version]
- Ozan, C.; Baskan, O.; Haldenbilen, S. A Novel Approach Based on Reinforcement Learning for Finding Global Optimum. Open J. Optim. 2017, 6, 65–84. [Google Scholar] [CrossRef] [Green Version]
NUSLA Parameter | Value |
---|---|
Minimum/maximum frequency | 0.5/1 GHz |
The number of frequencies | 11 |
Minimum/maximum spacing | 0.5/1.5 |
Minimum/maximum amplitude | 0.1/1 |
Minimum/maximum phase | 0/ |
Propagation speed | m/s |
MORELA Parameter | Value |
---|---|
The number of maximum learning episode | 1000 |
Size of the sub-environment | 20 |
Learning rate | 0.8 |
Discounting factor | 0.2 |
Search space reducing factor | 0.99 |
Max HPBW (deg) | Min HPBW (deg) | PSLL (dB) | Time (s) | ||
---|---|---|---|---|---|
6.16 | 3.08 | −20.15 | |||
MORELA | 9.74 | 4.86 | −19.99 | 37.95 | |
22.20 | 10.52 | −18.42 | |||
6.34 | 3.16 | −20.04 | |||
QPSO | 9.82 | 4.90 | −19.99 | 20.07 * | |
16.55 | 8.05 | −0.15 | |||
6.32 | 3.16 | −20.05 | |||
FA | 10.43 | 5.21 | −19.98 | 194.98 | |
22.97 | 10.84 | −17.90 | |||
6.48 | 3.24 | −20.00 | |||
SSA | 11.50 | 5.74 | −14.67 | 18.87 | |
21.18 | 10.10 | −13.47 | |||
10.38 | 5.18 | −18.63 | |||
MALO | 12.32 | 6.14 | −15.18 | 47.50 | |
22.97 | 10.84 | −14.19 |
Max HPBW (deg) | Min HPBW (deg) | PSLL (dB) | Time (s) | ||
---|---|---|---|---|---|
6.00 | 3.00 | −20.04 | |||
MORELA | 9.91 | 4.96 | −20.01 | 117.56 | |
21.78 | 10.46 | −17.08 | |||
6.22 | 3.10 | −20.03 | |||
QPSO | 10.11 | 5.04 | −18.34 | 53.40 | |
14.42 | 7.13 | −0.15 | |||
6.54 | 3.28 | −19.97 | |||
FA | 10.84 | 5.42 | −18.32 | 520.75 | |
22.18 | 10.55 | −12.87 | |||
6.58 | 3.28 | −16.30 | |||
SSA | 11.03 | 5.51 | −18.08 | 52.44 | |
21.10 | 10.07 | −13.26 | |||
9.96 | 4.98 | −14.47 | |||
MALO | 11.14 | 5.55 | −12.11 | 136.30 | |
21.06 | 10.1 | −10.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.; Kim, S.; Park, C.; Chung, W. Design Method for a Wideband Non-Uniformly Spaced Linear Array Using the Modified Reinforcement Learning Algorithm. Sensors 2022, 22, 5456. https://doi.org/10.3390/s22145456
Kang S, Kim S, Park C, Chung W. Design Method for a Wideband Non-Uniformly Spaced Linear Array Using the Modified Reinforcement Learning Algorithm. Sensors. 2022; 22(14):5456. https://doi.org/10.3390/s22145456
Chicago/Turabian StyleKang, Seyoung, Seonkyo Kim, Cheolsun Park, and Wonzoo Chung. 2022. "Design Method for a Wideband Non-Uniformly Spaced Linear Array Using the Modified Reinforcement Learning Algorithm" Sensors 22, no. 14: 5456. https://doi.org/10.3390/s22145456