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Abstract: Beamformers have been widely used to enhance signals from a desired direction and
suppress noise and interfering signals from other directions. Constant beamwidth beamformers
enable a fixed beamwidth over a wide range of frequencies. Most of the existing approaches to design
constant beamwidth beamformers are based on optimization algorithms with high computational
complexity and are often sensitive to microphone mismatches. Other existing methods are based on
adjusting the number of sensors according to the frequency, which simplify the design, but cannot
control the sidelobe level. Here, we propose a window-based technique to attain the beamwidth
constancy, in which different shapes of standard window functions are applied for different frequency
bins as the real weighting coefficients of microphones. Thereby, not only do we keep the beamwidth
constant, but we also control the sidelobe level. Simulation results show the advantages of our
method compared with existing methods, including lower sidelobe level, higher directivity factor,
and higher white noise gain.

Keywords: constant beamwidth beamformer; microphone arrays; chebyshev window; Kaiser
window; discrete prolate spheroidal sequences

1. Introduction

Beamformers, or spatial filters, enhance signals from a desired direction and suppress noise and
interfering signals from other directions. Deterministic and adaptive beamforming techniques have
been widely studied and used in radar, sonar, seismology, tomography, communication and many
other areas [1–5].

A variety of beamforming techniques are available, including data-independent, statistically
optimal and adaptive approaches. Traditional beamforming techniques suffer from a frequency varying
beamwidth , which restricts their deployment in broad-band applications (e.g., speech communication).
The basic approach of solving this problem is to design a constant beamwidth beamformer, where the
beampattern maintains a fixed beamwidth over a wide frequency band. Many existing methods
have been investigated to obtain constant beamwidths [6–12]. These methods are mainly based on
optimization algorithms with high computational design complexity, and they are often sensitive to
microphone mismatches.

Recently, Rosen et al. [13] proposed finite impulse response (FIR) based beamformers [14] with
constant beamwidths. The main idea behind this approach is to change the effective array aperture in
each frequency bin to maintain the beamwidth constant over the desired frequency band. This method
is characterized by low computational complexity, but cannot control the sidelobe level. If we regard
the coefficients of the FIR filter as a window function, then the beamformer is analogous to the
discrete Fourier transform of the window. It can be shown that the FIR filter proposed in [13] is a
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kind of modified rectangular window, and it inspires us to use other kinds of windows. As a result,
some standard window functions whose shapes are controlled by a single parameter can be directly
used to obtain different beamwidths and sidelobe levels, e.g., a discrete prolate spheroidal sequences
(DPSS) window can maximize the relative beamforming power that is concentrated in an angular
region, and a Chebyshev window minimizes the beamwidth for a given sidelobe level.

In this paper, we propose window-based beamformers with constant beamwidths. The main idea
is to apply different shapes of windows for different frequency bins as real weighting coefficients of
microphones, so that the beamwidth is maintained constant by controlling the window parameters.
The rest of this paper is organized as follows. In Section 2, we introduce the signal model and illustrate
the frequency varying beamwidth problem for traditional uniform linear arrays. Section 3 proposes
the window-based beamformer with a constant beamwidth, using modified rectangular, DPSS, Kaiser
and Chebyshev windowss. Section 4 evaluates the performances of different window-based methods
using the white noise gain and directivity factor. Finally, some conclusions are drawn in Section 5.

2. Signal Model and Problem Formulation

2.1. Signal Model

Consider a uniform linear array (ULA) consisting of M omnidirectional microphones, with an
interelement spacing equal to δ. Assume that there are an odd number (M = 2N + 1) of microphones,
as shown in Figure 1, whose locations are:

xm = mδ, m = −N,−(N − 1), . . . , N − 1, N, (1)

where m denotes the microphone index, and xm denotes the location of the mth microphone.
We consider the farfield case where a source of interest radiates an acoustic wave that propagates

in an anechoic environment at the speed of sound, i.e., c = 340 m/s. The direction of the source signal
is parameterized by the angle θ measured with respect to the broadside of the linear array. In the
frequency domain, the signal model at the frequency index f can be written as:

Ym ( f ) = Xm ( f ) + Vm ( f )

= e−m(2π f δ/c) sin θX0 ( f ) + Vm ( f ) , (2)

where Ym ( f ), Xm ( f ), and Vm ( f ) are the frequency-domain representations of the received noisy
signal, the desired source signal and the additive noise signal at the mth microphone, respectively,
f > 0 is the temporal frequency, and  is the imaginary unit with 2 = −1. In a vector form, we can
rearrange the signal model in Equation (2) as

y ( f ) = x ( f ) + v ( f )

= d ( f , θ) X0 ( f ) + v ( f ) , (3)

where

y ( f )
4
=
[

Y−N ( f ) · · · Y0 ( f ) · · · YN ( f )
]T

,

x ( f )
4
=
[

X−N ( f ) · · · X0 ( f ) · · · XN ( f )
]T

, (4)

v ( f )
4
=
[

V−N ( f ) · · · V0 ( f ) · · · VN ( f )
]T

,

the superscript T is the transpose operator, and

d ( f , θ)
4
=
[

eN(2π f δ/c) sin θ · · · 1 · · · e−N(2π f δ/c) sin θ
]T

,
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is the signal propagation vector corresponding to θ, which is in the same form as the steering vector.
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Figure 1. Beamforming with a uniform linear array consisting of M (M = 2N + 1) microphones with
spacing δ, where m denotes the microphone index, x denotes the location of the microphone, θ is the
direction of arrival angle measured with respect to the broadside of the linear array.

2.2. Beamformer

As shown in Figure 1, the beamformer estimates the desired signal by applying a spatial filter to
the sensors’ outputs [2], i.e.,

Z ( f ) =
N

∑
m=−N

w∗m ( f )Ym ( f ) = wH ( f ) y ( f ) , (5)

where ∗ and H denote complex conjugation and conjugate-transpose operator, Z ( f ) is an estimate of
the desired signal X0 ( f ), and

w ( f )
4
=
[

w−N ( f ) · · · w0 ( f ) · · · wN ( f )
]T

(6)

is the linear filter of length 2N + 1.
One of the most important measures to quantify the performance of a beamformer is the so-called

beampattern or directivity pattern, which describes the sensitivity of the beamformer to a plane wave
impinging on the array from the direction θ. Mathematically, the beampattern is defined as

B ( f , θ)
4
= wH ( f ) d ( f , θ) (7)

=
N

∑
m=−N

w∗m ( f ) e−m(2π f δ/c) sin θ . (8)

2.3. Beamwidth

We now give an example of the uniform weighting beamformer (i.e., delay-and-sum beamformer),

wm =
1
M

, m = −N,−(N − 1), . . . , N − 1, N, (9)

where M = 2N + 1. When θ 6= 0, we easily get

|B ( f , θ)| = 1
M

∣∣∣∣∣1− e−(2πM f δ/c) sin θ

1− e−(2π f δ/c) sin θ

∣∣∣∣∣ . (10)
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If we define the beamwidth θBW as the angle between the two lowest values at both sides of the
main lobe (i.e., the beamwidth null to null), θBW can be obtained in this case:

θBW = 2 sin−1
(

c
δM f

)
. (11)

This expression indicates the dependance of the beamwidth on the number of sensors M,
interelement spacing δ and frequency f . One can observe that the beamwidth decreases as the
frequency increases, which implies that this beamforming method suffers from a frequency varying
beamwidth. The beampattern based on the delay-and-sum beamformer is shown in Figure 2.
One observes that the beamwidth decreases as the frequency increases.
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Figure 2. Beampattern using delay-and-sum beamformer. M = 11, δ = 3.5 cm.

3. Window-Based Acoustic Beamformer with a Constant Beamwidth

In this section, we propose a window-based symmetrical beamformer method with a constant
beamwidth θCBW over a wide frequency range.

Define u
4
= (2π f δ/c) sin θ, then the steering vector can be rewritten as:

d (u) =
[

eNu · · · 1 · · · e−Nu
]T

. (12)

Accordingly, the beampattern is obtained through the discrete Fourier transform of the
spatial filter:

B(u) =
N

∑
m=−N

w∗me−mu = wHd (u) (13)

In this work, we restrict ourselves to real weights, then the beampattern is given by

B(u) =
N

∑
m=−N

wme−mu = wTd (u) (14)

The real weights wm are regarded as a spatial window function. Hence, the beamwidth can be
maintained by applying different shapes of windows for different frequency bins. Next, we present
four different kinds of windows, i.e., modified rectangular, DPSS, Kaiser, Chebyshev. For each window,
we first introduce the mathematical representation, and then show how to control its shape as a function
of frequency by setting the proper parameter of the window in order to maintain constant beamwidth.
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3.1. Modified Rectangular Window

From Equation (11), in order to keep the beamwidth constant for varying frequency, the product
M f should remain constant, which means that the number of microphones should decrease as the
frequency increases. To alleviate the beamwidth fluctuations, Rosen et al. [13] proposed a modified
rectangular window based on smoothing coefficients.

The weights wm in [13] can be regarded as a kind of modified rectangular window:

wm =


1, −K < m < K
g, m = −K, m = K, (0 < g < 1)
0, otherwise

(15)

where 2K + 1 is the number of activated microphones, and g is the smoothing coefficient.
Next, we show how to obtain the parameter K and g to keep the beamwidth θBW constant.

3.1.1. Lowest and Highest Frequencies

Since the number of activated microphones should be less than M and more than 3, we should
first determine the lowest frequency fL and the highest frequency fH for which the desired beamwidth
is feasible. For the given array configuration and fixed beamwidth θCBW, based on Equation (11),
the lowest and highest frequencies using rectangular window are

fL,Rec =
c

Mδ sin (θCBW/2)
,

fH,Rec =
c

3δ sin (θCBW/2)
. (16)

Meanwhile, in order to avoid maximum grating lobe, the highest frequency fH,Rec should also be
smaller than c/δ.

3.1.2. The Parameter K

For the feasible frequency range fL < f < fH , we need to reduce the number of activated
microphones to keep (2K + 1) f constant as the frequency varies. So the value of K is obtained by the
maximum integer which satisfied (2K + 1) f 6 M fL.

3.1.3. The Parameter g

The smoothing coefficient g can be derived as follows. The beampattern using the modified
rectangular window wm is given by

B ( f , θ) =
N

∑
m=−N

wme−m(2π f δ/c) sin θ

= 2g cos (2Kπ f δ sin θ/c) +
K−1

∑
m=−(K−1)

e−m(2π f δ/c) sin θ . (17)

The optimal value of smoothing coefficient g is obtained by setting B ( f , θCBW/2) = 0,
which yields

g =

K−1
∑

m=−(K−1)
e−m(2π f δ/c) sin(θCBW/2)

−2 cos (2Kπ f δ sin (θCBW/2) /c)
. (18)
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In order to normalize the beampattern, we use the normalized weighting coefficients as:

w
′
m =

wm
N
∑

m=−N
wm

=
wm

2g + 2K + 1
. (19)

The beampattern based on a modified rectangular window is shown in Figure 3. The beamwidth
is fixed to 40◦, M = 11 and δ = 3.5 cm. We show the beampattern in three different frequencies
f = 4000, 5000, 6000 Hz. One observes that the rectangular window-based method can effectively fix
the beamwidth, but the sidelobe level is high in this case.
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Figure 3. Constant beamwidth beampattern using a modified rectangular window. The beamwidth is
fixed to 40◦, M = 11, δ = 3.5 cm.

3.2. DPSS Window

Rectangular window-based method can effectively fix the beamwidth but cannot control the
sidelobes. So, we attempt to find some other windows with real weights in order to control the sidelobe
level. Based on Equation (13), we can first define α as the ratio of the total beamforming power that is
concentrated in a given angular region:

α =

∫ u0
−u0
|B(u)|2 du∫ π

−π |B(u)|
2 du

=
wH

[∫ u0
−u0

d (u) d (u)H du
]

w

wH
[∫ π
−π d (u) d (u)H du

]
w

=
wHAw
wHBw

, (20)

where u0 = (2π f δ/c) sin θ0, A =
∫ u0
−u0

d (u) d (u)H du, the (m, n)th element of A is

∫ u0

−u0

emue−nudu =
2 sin [(m− n)u0]

m− n
, (21)

and similarly,

B =
∫ π

−π
d (u) d (u)H du = 2πI, (22)
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where I is the M × M identity matrix. To maximize α, the optimum solution is obtained from the
eigenvalue problem

Aw = πλw (23)

or equivalently,

N

∑
n=−N

sin [(m− n)u0]

m− n
wn = πλwm, (24)

where λ is an eigenvalue of A. Thus in this case, α is maximized by the maximum eigenvalue
λmax. The resulting weight sequences wm are called discrete prolate spheroidal sequences [15] (DPSS,
or Slepian sequences).

3.2.1. Lowest and Highest Frequencies

When u0 = 0, the DPSS window becomes a rectangular window. From Equation (11), we get the
lowest frequency fL,DPSS which enables the desired beamwidth:

fL,DPSS =
c

Mδ sin (θCBW/2)
, (25)

On the other side, in order to avoid maximum grating lobe, the highest frequency is given by

fH,DPSS =
c
δ

. (26)

3.2.2. The Parameter u0

For the given array configuration, it is easy to verify that the beamwidth increases as the parameter
u0 increases. For the given constant beamwidth θCBW, we can set for the frequency f

u0 ≈ (2π f δ/c) sin (θCBW/2) ,

or we can search the optimal parameter u0 to fix the beamwidth in practice, then wm can be obtained
following the DPSS window in Equation (24).

At last, in order to normalize the beampattern, we use the normalized weighting coefficients as:

w
′
m =

wm
N
∑

m=−N
wm

. (27)

The beampattern based on a DPSS window is shown in Figure 4. The beamwidth is still
fixed to 40◦, M = 11 and δ = 3.5 cm. We show the beampattern in three different frequencies
f = 4000, 5000, 6000 Hz. It can be seen that the DPSS window based approach cannot only keep the
beamwidth constant, but also effectively suppresses the sidelobe level.
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Figure 4. Constant beamwidth beampattern using a DPSS window. The beamwidth is fixed to 40◦,
M = 11, δ = 3.5 cm.

3.3. Kaiser Window

A Kaiser window is a simple approximation to the DPSS window using Bessel functions.
The details of calculating a Kaiser window can be found in [16]. The weighting coefficient of the
microphone with index m is:

wm =

J0

(
β

√
1−

(m
N
)2
)

J0 (β)
,− N 6 m 6 N (28)

where J0 is the zeroth-order modified Bessel function of the first kind. The parameter β > 0 specifies
a beampattern tradeoff between the sidelobe amplitude ASL and the main lobe width. When β = 0,
the Kaiser window becomes a rectangular window.

3.3.1. Lowest and Highest Frequencies

Since the Kaiser window approximates the DPSS window, in oder to make the desired beamwidth
feasible, the lowest and highest frequencies using kaiser window are

fL,Kaiser =
c

Mδ sin (θCBW/2)
,

fH,Kaiser =
c
δ

. (29)

3.3.2. The Parameter β

For the given array configuration, it is easy to verify that the beamwidth increases as the parameter
β increases. For a given constant beamwidth θCBW, the parameter β can be obtained following the
approximate piecewise relation [16]:{

β ≈ 0.76608 (ASL − 13.26)0.4 + 0.09834 (ASL − 13.26) ,
ASL ≈ (26M f δ/c) sin (θCBW/2)− 12.

In practice, we can also search the optimal parameter β for a constant beamwidth. Furthermore,
in order to normalize the beampattern, we use the normalized weighting coefficients as:
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w
′
m =

wm
N
∑

m=−N
wm

. (30)

The beampattern based on a Kaiser window is shown in Figure 5. We fix the beamwidth
to 40◦, M = 11 and δ = 3.5 cm, and plot the beampattern in three different frequencies
f = 4000, 5000, 6000 Hz. It is shown that the Kaiser window based method can get a similar
beampattern as the DPSS window.
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Figure 5. Constant beamwidth beampattern using a Kaiser window. The beamwidth is fixed to 40◦,
M = 11, δ = 3.5 cm.

3.4. Chebyshev Window

Another window that can be used to control the main lobe beamwidth and sidelobe level is the
Chebyshev Window [17,18], which minimizes the beamwidth for a given maximum sidelobe level.
The coefficients wm of the Chebyshev window are given by

wm =
1
M

[
1 + 2r

N

∑
n=1

T2N

(
x0 cos

(nπ

M

))
cos

(
2πnm

M

)]
, (31)

where −N 6 m 6 N, M = 2N + 1, x0 = cosh
(

1
2N cosh−1

(
1
r

))
, r is defined as the amplitude ratio

between maximum sidelobe and mainlobe, and Tm(x) is the Chebyshev polynomial of the first kind,
defined by

Tm(x) =

{
cos

(
m cos−1(x)

)
|x| 6 1

cosh
(

m cosh−1(x)
)
|x| > 1

(32)

3.4.1. Lowest and Highest Frequencies

When the sidelobe attenuation is the same as the mainlobe, or r = 1, the coefficients wm of the
Chebyshev window are

wm =

{
1, m = −N, m = N
0, otherwise.

(33)

It is equivalent to a two elements array with an interelement spacing 2Nδ. According to Equations
(25) and (26), the lowest and highest frequencies using Chebyshev window are:

fL,Cheb =
c

4Nδ sin (θCBW/2)
,

fH,Cheb =
c
δ

. (34)
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3.4.2. The Parameter r

For the given array configuration, it is easy to verify that the beamwidth increases as the parameter
r decreases. For a given constant beamwidth θCBW, the parameter r can be obtained following the
approximate piecewise relation: r = 1/ cosh

(
2N cosh−1 x0

)
,

x0 ≈ 1/ cos
(
(π f δ/c) sin

(
θCBW

2

))
.

In practice, we can also search the optimal parameter r for a constant beamwidth. Again, in order
to normalize the beampattern, we use the normalized weighting coefficients as:

w
′
m =

wm
N
∑

m=−N
wm

. (35)

The beampatterns for different frequencies based on a Chebyshev window are shown in Figure 6.
Again, the beamwidth is fixed to 40◦, and one can find that the Chebyshev window based method can
also effectively keep the beamwidth constant and yield equi-level sidelobes.
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Figure 6. Constant beamwidth beampattern using the Chebyshev window. The beamwidth is fixed to
40◦, M = 11, δ = 3.5 cm.

4. Experiments and Results

We have discussed different window-based beamformers with a constant beamwidth in Section 3.
In this section, we compare the performances of different windows via several simulations. All of the
simulated uniform linear arrays are configured with M = 11 omnidirectional microphones, with an
interelement spacing equal to δ = 3.5. In these experiments, the modified rectangular, DPSS, Kaiser and
Chebyshev window-based methods are used and the beamwidth is fixed to θCBW = 40◦. In Section 4.1
we show how to set the optimal parameter to shape the window and design the beamformer in order
to attain beamwidth constancy. Section 4.2 provides the performance measures of the beamformer.
Section 4.3 shows the results.

4.1. Optimal Window Parameter

In Section 3, we have shown how to set the parameter to shape the window in order to attain
beamwidth constancy, e.g., the parameter g for the modified rectangular window, the parameter u0

for the DPSS window, the parameter β for the Kaiser window, and the parameter r for the Chebyshev
window. Compared with the optimization-based method, one can see that our method has very low
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computational complexity in the design process, because the problem has been simplified as obtaining
a single parameter of the standard window.

In practice, we can also search the optimal parameter of a given window. There are two reasons
for using the search method: (1) The relationship between the fixed beamwidth and the parameter is
approximate piecewise in some cases. (2) The search method can be easily extended to non uniform
arrays. Algorithm 1 shows the search algorithm of a window-based beamformer with a constant
beamwidth, where we search the optimal parameter of a given window for each frequency bin to
keep the beamwidth fixed to θCBW = 40◦, fL and fH are the lower and upper cutoff frequencies of the
frequency band, respectively.

Algorithm 1 Algorithm for Searching the Optimal Parameter.
for f = fL : fH

Initial the parameter of window w
Search θmin for the first lowest value of |B ( f , θ)| =

∣∣wH ( f ) d ( f , θ)
∣∣

while θmin 6= θCBW/2
Increase (or decrease) the parameter of window w
Search θmin for the first lowest value of |B ( f , θ)| =

∣∣wH ( f ) d ( f , θ)
∣∣

end
end

4.2. Performance Measures

We evaluate the beamformers using white noise gain (WNG) and directivity factor (DF) [1,4,19].
The WNG is a measure indicating the array gain in the presence of uncorrelated white noise, which is
also a measure of the sensitivity of the microphone array to some of its imperfections, such as sensor
noise and mismatch. The DF of the array is the gain in signal-to-noise ratio (SNR) for the case of
spherical diffuse noise. Mathematically, they are respectively defined asW and D (note that the main
lobe is perpendicular to the line that connects all the array elements):

W [w ( f )] =

∣∣wH ( f ) d ( f , 0)
∣∣2

wH ( f )w ( f )
, (36)

D [w ( f )] =
|B [w ( f ) , 0]|2

1
2

∫ π
2

− π
2

|B [w ( f ) , θ]|2 sin θdθ

=

∣∣wH ( f ) d ( f , 0)
∣∣2

1
2

∫ π
2

− π
2

wH ( f ) d ( f , θ) d ( f , θ)H w ( f ) sin θdθ

. (37)

We also evaluate the beamformers beamwidth which is defined as the angle between the two
lowest values at both sides of the main lobe (i.e., the beamwidth null to null).

4.3. Results

4.3.1. Wideband Beampatterns with a Constant Beamwidth Using Different Windows

We first compare the constant beamwidth beampatterns using different kinds of windows, where
the frequency range is 0 < f < 8000 Hz. The results are plotted in Figure 7 for the modified
rectangular window, Figure 8 for the DPSS window, Figure 9 for the Kaiser window, and Figure 10
for the Chebyshev window. One can see that all the window-based methods can effectively keep the
beamwidth constant over a wide frequency band. Compared with modified rectangular window [13],
the other proposed windows can obtain much lower sidelobe levels.
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Figure 7. Constant beamwidth beamforming using the modified rectangular window-based method:
(a) constant beamwidth beampattern, (b) the parameter K, g, (c) the weights of microphones for
different frequency bins. The beamwidth is fixed to 40◦, M = 11, δ = 3.5 cm.
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Figure 8. Constant beamwidth beamforming using the DPSS window-based method: (a) constant
beamwidth beampattern, (b) the parameter u0, (c) the weights of microphones for different frequency
bins. The beamwidth is fixed to 40◦, M = 11, δ = 3.5 cm.
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Figure 9. Constant beamwidth beamforming using the Kaiser window-based method: (a) constant
beamwidth beampattern, (b) the parameter β, (c) the weights of microphones for different frequency
bins. The beamwidth is fixed to 40◦, M = 11, δ = 3.5 cm.
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Figure 10. Constant beamwidth beamforming using the Chebyshev window-based method:
(a) constant beamwidth beampattern, (b) the parameter r, (c) the weights of microphones for different
frequency bins. The beamwidth is fixed to 40◦, M = 11, δ = 3.5 cm.
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4.3.2. Chebyshev Window

In order to explain the performance based on the Chebyshev window in low frequency bins,
we show the weights of the microphones using the Chebyshev window when f = 1000, 1500, 2000,
2500, 3000 Hz, and the results are plotted in Figure 11. One can find that the Chebyshev approach
designs a kind of ’saddle’ shape window, where high weights are set for the microphones at the edges
of the array. Suppose an extreme situation that we only use the two microphones at the edge, which
means the Chebyshev window will be

w =
[

0.5 0 · · · 0 · · · 0 0.5
]T

, (38)

the interelement spacing will be δ′ = 2Nδ and the number of microphones is M′ = 2. Based on
Equation (11), the lowest frequency fL,Cheb which can attain the fixed beamwidth θCBW is

fL,Cheb =
c

M′δ′ sin (θCBW/2)
=

c
4Nδ sin (θCBW/2)

<
c

Mδ sin (θCBW/2)
= fL,Rec = fL,DPSS = fL,Kaiser. (39)

With this method, it is equivalent to increasing the interelement spacing and the virtual length of
the array. As a result, the Chebyshev window-based beamformer can attain beamwidth constancy in
lower frequencies compared with the other windows-based beamformers.

In order to improve the DF using a Chebyshev window in low frequency bins, we can search
the parameter r to reach a compromise between beamwidth and DF. We call this compromised
method a Chebyshev window-I. The search criteria in this case will increase (or decrease) the
parameter of the window to maximize the directivity index, given the beamwidth is above the desired
minimal beamwidth. Figure 12 shows the weights of microphones using Chebyshev window-I when
f = 1000, 1500, 2000, 2500, 3000. The beampatterns and the parameters as functions of frequency
using this method are shown in Figure 13.

Chebyshev Window (low frequency)
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Figure 11. The weights of microphones for low frequency bins using the Chebyshev window, M = 11,
δ = 3.5 cm.
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Chebyshev Window - I (low frequency)
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Figure 12. The weights of microphones for low frequency bins using the Chebyshev window-I, M = 11,
δ = 3.5 cm.

4.3.3. Directivity Factor and White Noise Gain as Function of Frequency

The DF and WNG as functions of frequency for different window-based beamformer are plotted
in Figures 14 and 15. It is shown that the DPSS, Kaiser and Chebyshev window-based beamformer
can achieve higher WNG and DF compared with the rectangular window in high frequencies.
For frequencies below 2500 Hz, one can also see that the Chebyshev window-I beamformer gets
highest DF compared with the other beamformers.

4.3.4. Beamwidth as Function of Frequency

At last, we compare the beamwidth as function of frequency for different window-based
beamformers, and the results are plotted in Figure 16. For high frequencies (2500 < f < 8000 Hz),
all the window-based beamformers can effectively fix the beamwidth to be 40◦. For frequencies below
2500 Hz, it can be found that the Chebyshev window-based beamformer obtains smaller beamwidth
compared with the other beamformers. As a result, the Chebyshev window-based beamformer can
reach to the fixed beamwidth (40◦) at nearly 1400 Hz, but the other window-based beamformers attain
beamwidth constancy only above 2500 Hz.
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Figure 13. Cont.
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Figure 13. Constant beamwidth beamforming using the Chebyshev window-I method: (a) constant
beamwidth beampattern, (b) the parameter r, (c) the weights of microphones for different frequency
bins. The beamwidth is fixed to 40◦, M = 11, δ = 3.5 cm.
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Figure 14. DF as a function of frequency for different window-based beamformers with a constant
beamwidth. The beamwidth is fixed to 40◦, M = 11, δ = 3.5 cm.
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Figure 15. WNG as a function of frequency for different window-based beamformers with a constant
beamwidth. The beamwidth is fixed to 40◦, M = 11, δ = 3.5 cm.
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Figure 16. Beamwidth as a function of frequency for different window-based beamformers.
The beamwidth is fixed to 40◦, M = 11, δ = 3.5 cm.

5. Conclusions

Traditional beamforming techniques suffer from a frequency varying beamwidth, which restricts
their deployment in broadband applications. We have proposed window-based beamformers with
constant beamwidths. Our method can effectively fix the beamwidth and exhibits the following
advantages: (1) Compared with the optimization-based method, the proposed window-based approach
is characterized by lower computational design complexity and higher white noise gain (which means
it is less sensitive to microphone mismatches). (2) Compared with the FIR-based method proposed
in [13], our window-based approach can reduce the sidelobe level and obtain higher directivity factor.
Experiments corroborate the theoretical analysis and show that we can adjust the parameter of window
to get the tradeoff between WNG and DF. Furthermore, hybrid window based beamformer design
method is a topic for future research, which facilitates different windows for different frequency bins.
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