Design and Implementation of a Subnanometer Heterodyne Interference Signal Processing Algorithm with a Dynamic Filter
Abstract
:1. Introduction
- Aiming at the problem that the signal−to−noise ratio of the measured signal is low and the phase error after the solution is large, a sub−nanometer heterodyne interference signal processing algorithm with a dynamic filter is proposed. The center frequency of the passband can change with the main frequency. On the one hand, it can ensure that the measurement signal of 4–36 MHz passes through the filter. On the other hand, it can keep the passband narrow and attenuate most of the unwanted frequency components, which improves the system’s resolution.
- Aiming at the problems of different amplitudes of reference and measurement signals and the uncertainty of the frequency difference of the dual−frequency laser, the function of the phase solution algorithm of bi−quadrature lock−in amplification in solving these two kinds of problems is analyzed. The bi−quadrature lock−in amplification algorithm can solve these two types of problems in principle by mixing, filtering and phase difference, and finally generate two quadrature signals with equal amplitudes and only containing phase information [9].
- Several groups of experiments are designed to compare the solution effect of the general bandpass filter and heterodyne interference signal processing algorithm with a dynamic filter. A hardware−in−the−loop simulation experiment is designed to test the solution effect of the phase solution algorithm with a dynamic filter when the motion speed and acceleration of the motion table are large. It is proved that in the frequency range of 4–36 MHz, the filter can attenuate the unwanted frequencies well, thereby improving the resolution of the system.
2. Signal Processing Algorithm Design
2.1. Preprocessing Module Design
2.1.1. Design of Real−Time Frequency Measurement Module
2.1.2. Variable Coefficient Filter Design
2.2. Phase−Resolving Module Design
3. Experiments and Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Du, H.; Zhang, W.T.; Xiong, X.M.; Zeng, Q.L.; Wang, Y.L.; Zhang, Y.T.; Xu, S.H.; Li, H.Y. Influence of installation error of grating interferometer on high-precision displacement measurement. Opt. Eng. 2021, 60, 045102. [Google Scholar] [CrossRef]
- Ye, W.N.; Ming, Z.; Yu, Z.; Wang, L.J.; Hu, J.C.; Li, X.; Hu, C.X. Real-time displacement calculation and offline geometric calibration of the grating interferometer system for ultra-precision wafer stage measurement. Precis. Eng. 2019, 60, 413–420. [Google Scholar] [CrossRef]
- Wang, X.; Yang, J.; Chen, M.; Miao, L.; Huang, T. Sinusoidal Phase-Modulated Angle Interferometer for Angular Vibration Measurement. Sensors 2021, 21, 6295. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Zeng, L.; Chu, D.; Sun, X. Highly Sensitive Dual Parameter Sensor Based on a Hybrid Structure with Multimode Interferometer and Fiber Bragg Grating Fabricated by Femtosecond Laser. Sensors 2021, 21, 5938. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.H.; Yan, L.P.; Chen, B.Y.; Xu, Z.Y.; Xie, J.D. Real-time phase delay compensation of PGC demodulation in sinusoidal phase-modulation interferometer for nanometer displacement measurement. Opt. Express 2017, 25, 472–485. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.P.; Tu, T.C.; Huang, S.R.; Wang, Y.C.; Chang, S.C. Development of the Heterodyne Laser Encoder System for the X–Y Positioning Stage. Sensors 2021, 21, 5775. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.H. Research on the Key Technology of Signal Processing in Laser Heterodyne Interferometry with Picometer Resolution. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2016. [Google Scholar]
- Yang, Y.; Yamamoto, K.; Dovale Álvarez, M.; Wei, D.; Esteban Delgado, J.J.; Müller, V.; Jia, J.; Heinzel, G. On-Axis Optical Bench for Laser Ranging Instruments in Future Gravity Missions. Sensors 2022, 22, 2070. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.J. Research on Phase Subdivision Technology of Picometer Resolution Dual-Frequency Laser Interferometer. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2015. [Google Scholar]
- Zhang, Y.; Hines, A.S.; Valdes, G.; Guzman, F. Investigation and Mitigation of Noise Contributions in a Compact Heterodyne Interferometer. Sensors 2021, 21, 5788. [Google Scholar] [CrossRef] [PubMed]
- Li, S.M.; Wang, J.K.; Zhang, W.T.; Du, H.; Xiong, X.M. Real-Time Direction Judgment System of Sub-Nanometer Scale Grating Ruler. IEEE Access 2021, 9, 74939–74948. [Google Scholar] [CrossRef]
- Jha, A. A residual based a posteriori error estimators for AFC schemes for convection-diffusion equations. Comput. Math. Appl. 2021, 97, 86–99. [Google Scholar] [CrossRef]
- Xiong, X.M.; Zhang, W.; Zhang, Z.; Zeng, Q.L.; Du, H.; Xu, S.H.; Zhang, Y.T.; Zhao, Z. A Closed-Loop Controlled Synchronous Dynamic Gain Compensation Method for Laser Interferometry. CN Patent ZL202110578721.0, 16 May 2021. [Google Scholar]
- Xiong, X.M.; Zhang, Z.; Zhang, W.; Du, H.; Zeng, Q.L.; Xu, S.H.; Zhang, Y.T.; Zhao, Z. APD High Signal-to-Noise Ratio Gain Automatic Selection Control Device and Method. CN Patent Application CN202110577057.8, 27 August 2021. [Google Scholar]
- Gupta, A.; Kumar, S. Design of Atangana–Baleanu–Caputo fractional-order digital filter. ISA Trans. 2021, 112, 74–88. [Google Scholar] [CrossRef] [PubMed]
- Jongsataporn, T.; Chivapreecha, S. The matrix-based design and realization of digital parametric equalizer. AEU - Int. J. Electron. Commun. 2021, 134, 153651. [Google Scholar] [CrossRef]
- Kaplun, D.; Voznesensky, A.; Veligosha, A.V.; Kalmykov, I.A.; Sarma, K.K. Technique to Adjust Adaptive Digital Filter Coefficients in Residue Number System Based Filters. IEEE Access 2021, 9, 82402–82416. [Google Scholar] [CrossRef]
- Abdellatef, H.; Khalil-Hani, M.; Shaikh-Husin, N.; Omid Ayat, S. Low-area and accurate inner product and digital filters based on stochastic computing. Signal Process. 2021, 183, 108040. [Google Scholar] [CrossRef]
- Lim, Y.C.; Saramäki, T.; Diniz, P.S.R.; Liu, Q. Fast Convergence Method for Scaling Window Sidelobe Magnitude. IEEE Signal Process. Lett. 2021, 28, 2078–2081. [Google Scholar] [CrossRef]
- Castello, D.; Rochinha, F. An experimental assessment of transverse adaptive fir filters as applied to vibrating structures identification. Shock Vib. 2005, 12, 197–216. [Google Scholar] [CrossRef]
- Mahdavi, H.; Timarchi, S. Improving Architectures of Binary Signed-Digit CORDIC with Generic/Specific Initial Angles. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 2297–2304. [Google Scholar] [CrossRef]
Speed (mm/s) | 0.1 | 1 | 3 | 5 | 10 | 20 | |
---|---|---|---|---|---|---|---|
Parameter | |||||||
Average value (mrad) | 0.02 | 0.24 | 0.75 | 1.21 | 2.54 | 4.96 | |
Standard error (mrad) | 0.22 | 0.33 | 0.22 | 0.39 | 0.39 | 0.29 | |
Maximum error (mrad) | 1.03 | 3.24 | 1.51 | 5.79 | 1.30 | 2.40 | |
Peak−Peak error (mrad) | 1.96 | 6.31 | 2.66 | 9.43 | 2.61 | 4.79 |
Frequency (MHz) | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ||
Average value (mrad) | −628.2 | −589.1 | −549.8 | −510.6 | −471.2 | −432.0 | −392.7 | −353.4 | −314.2 | ||
Standard error (mrad) | 4.63 | 1.78 | 1.52 | 1.64 | 1.51 | 1.64 | 1.89 | 1.75 | 1.48 | ||
Peak−Peak error (mrad) | 7.43 | 2.48 | 2.56 | 2.38 | 2.14 | 2.20 | 5.38 | 2.37 | 2.02 | ||
Speed (m/s) | −10.20 | −9.56 | −8.93 | −8.29 | −7.65 | −7.01 | −6.38 | −5.74 | −5.10 | ||
13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
−274.9 | −235.6 | −196.4 | −157.1 | −117.8 | −78.5 | −39.3 | 0.00 | 39.3 | 78.6 | 117.8 | 157.1 |
1.55 | 1.54 | 1.49 | 1.58 | 1.63 | 1.51 | 1.49 | 1.60 | 1.56 | 1.41 | 1.35 | 1.47 |
2.20 | 2.10 | 2.09 | 1.94 | 2.01 | 2.22 | 2.14 | 2.10 | 2.13 | 1.95 | 1.87 | 1.95 |
−4.46 | −3.83 | −3.19 | −2.55 | −1.91 | −1.28 | −0.64 | 0.00 | 0.64 | 1.28 | 1.91 | 2.55 |
25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
196.4 | 235.6 | 274.9 | 314.2 | 353.4 | 392.8 | 432.0 | 471.2 | 510.5 | 549.8 | 589.0 | 628.3 |
1.42 | 1.54 | 1.71 | 1.73 | 1.76 | 1.65 | 1.87 | 1.75 | 2.02 | 2.28 | 3.30 | 8.26 |
1.87 | 2.04 | 2.27 | 2.38 | 2.48 | 2.35 | 2.42 | 2.50 | 3.17 | 3.24 | 4.10 | 8.00 |
3.19 | 3.83 | 4.46 | 5.10 | 5.74 | 6.38 | 7.01 | 7.65 | 8.29 | 8.93 | 9.56 | 10.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Q.; Zhao, Z.; Xiong, X.; Du, H.; Zhang, W.; Zhang, Z.; Wang, P.; Lei, L. Design and Implementation of a Subnanometer Heterodyne Interference Signal Processing Algorithm with a Dynamic Filter. Sensors 2022, 22, 5422. https://doi.org/10.3390/s22145422
Zeng Q, Zhao Z, Xiong X, Du H, Zhang W, Zhang Z, Wang P, Lei L. Design and Implementation of a Subnanometer Heterodyne Interference Signal Processing Algorithm with a Dynamic Filter. Sensors. 2022; 22(14):5422. https://doi.org/10.3390/s22145422
Chicago/Turabian StyleZeng, Qilin, Zhengyi Zhao, Xianming Xiong, Hao Du, Wentao Zhang, Zhicheng Zhang, Peng Wang, and Lihua Lei. 2022. "Design and Implementation of a Subnanometer Heterodyne Interference Signal Processing Algorithm with a Dynamic Filter" Sensors 22, no. 14: 5422. https://doi.org/10.3390/s22145422
APA StyleZeng, Q., Zhao, Z., Xiong, X., Du, H., Zhang, W., Zhang, Z., Wang, P., & Lei, L. (2022). Design and Implementation of a Subnanometer Heterodyne Interference Signal Processing Algorithm with a Dynamic Filter. Sensors, 22(14), 5422. https://doi.org/10.3390/s22145422