Measurement and Region Identification in Deep Displacement of Slopes Based on Rod-Fiber Coupling Structure
Abstract
:1. Introduction
2. Research Contents and Methods
2.1. Structure Design
2.2. Measurement and Identification Principle
2.2.1. Deep-Displacement Measurement Principle of Slope
2.2.2. Deep-Displacement Region Identification Principle for Slopes
2.3. Calibration Experiment Scheme
2.4. Model Experiment Scheme
2.4.1. Slope Model Design and Rod-Fiber Coupling Structures Installation
2.4.2. Slope Model Building and Lateral Loading
3. Results and Discussion
3.1. Influence of Pitch and Diameter on Initial Optical Loss of Rod-Fiber Coupling Structure
3.2. Fitting Curve for Lateral Loading Displacement and Optical Loss
3.3. Analysis of Measurements of Deep Displacement of Slopes
3.3.1. Measurement Error of Rod-Fiber Coupling Structure
3.3.2. Difference Analysis of the Measurement Characteristics of Different Rod-Fiber Coupling Structures
3.4. Analysis of Displacement-Region Identification Error
3.5. Application Analysis of the Rod-Fiber Coupling Structure in Actual Slope Engineering
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agliardi, F.; Crosta, G.; Zanchi, A. Structural constraints on deep-seated slope deformation kinematics. Eng. Geol. 2001, 59, 83–102. [Google Scholar] [CrossRef]
- Stark, T.D.; Choi, H. Slope inclinometers for landslides. Landslides 2008, 5, 339–350. [Google Scholar] [CrossRef]
- Pánek, T.; Klimeš, J. Temporal behavior of deep-seated gravitational slope deformations: A review. Earth-Sci. Rev. 2016, 156, 14–38. [Google Scholar] [CrossRef]
- Pei, H.-F.; Zhang, S.-Q.; Borana, L.; Yuan, B. Development of a preliminary slope stability calculation method based on internal horizontal displacements. J. Mt. Sci. 2018, 15, 1129–1136. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, S.; Chen, J.; Teng, P.; Wei, F.; Chen, Q. A Laboratory Experimental Study: An FBG-PVC Tube Integrated Device for Monitoring the Slip Surface of Landslides. Sensors 2017, 17, 2486. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.W.; Liu, D.Y.; Yuan, Q.Y.; Liu, B.; Liu, J.C. A novel distributed optic fiber transduser for landslides monitoring. Opt. Lasers Eng. 2011, 49, 1019–1024. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, S.; Zhang, W.; Liu, H. Analysis of deformation characteristics and stability mechanisms of typical landslide mass based on the field monitoring in the Three Gorges Reservoir, China. J. Earth Syst. Sci. 2018, 128, 9. [Google Scholar] [CrossRef] [Green Version]
- Lei, G.; Gong, X. Analysis of Lateral Displacement Law of Deep Foundation Pit Support in Soft Soil Based on Improved MSD Method. Adv. Civ. Eng. 2021, 2021, 5550214. [Google Scholar] [CrossRef]
- Xu, J.; Li, H.; Du, K.; Yan, C.; Zhao, X.; Li, W.; Xu, X. Field investigation of force and displacement within a strata slope using a real-time remote monitoring system. Environ. Earth Sci. 2018, 77, 552. [Google Scholar] [CrossRef]
- Ballantyne, C.K.; Stone, J.O. Timing and periodicity of paraglacial rock-slope failures in the Scottish Highlands. Geomorphology 2013, 186, 150–161. [Google Scholar] [CrossRef]
- Lee, S.; Chwae, U.; Min, K. Landslide susceptibility mapping by correlation between topography and geological structure: The Janghung area, Korea. Geomorphology 2002, 46, 149–162. [Google Scholar] [CrossRef]
- He, Z.; Wang, B. Instability Process Model Test for Bedding Rock Slope with Weak Interlayer under Different Rainfall Conditions. Adv. Civ. Eng. 2018, 2018, 8201031. [Google Scholar] [CrossRef]
- Gischig, V.S.; Moore, J.R.; Evans, K.F.; Amann, F.; Loew, S. Thermomechanical forcing of deep rock slope deformation: 2. the Randa rock slope instability. J. Geophys. Res. Earth Surf. 2011, 116, 1–17. [Google Scholar] [CrossRef]
- El Bedoui, S.; Guglielmi, Y.; Lebourg, T.; Pérez, J.L. Deep-seated failure propagation in a fractured rock slope over 10,000 years: The La Clapière slope, the south-eastern French Alps. Geomorphology 2009, 105, 232–238. [Google Scholar] [CrossRef]
- Malkawi, A.I.H.; Hassan, W.F.; Sarma, S.K. Global Search Method for Locating General Slip Surface Using Monte Carlo Techniques. J. Geotech. Geoenviron. Eng. 2001, 127, 688–698. [Google Scholar] [CrossRef]
- Macciotta, R.; Hendry, M.; Martin, C.D. Developing an early warning system for a very slow landslide based on displacement monitoring. Nat. Hazards 2016, 81, 887–907. [Google Scholar] [CrossRef]
- Cheng, Y.M.; Lansivaara, T.; Wei, W.B. Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods. Comput. Geotech. 2007, 34, 137–150. [Google Scholar] [CrossRef]
- Oboni, F.; Bourdeau, P.L. Determination of the Critical Slip Surface in Stability Problems. In Proceedings of the International conference on applications of statistics and probability in soil and structural engineering, Florence, Italy, 13–17 June 1983; pp. 1413–1424. [Google Scholar]
- Das, S.; Saha, P. A review of some advanced sensors used for health diagnosis of civil engineering structures. Measurement 2018, 129, 68–90. [Google Scholar] [CrossRef]
- Xu, N.W.; Tang, C.A.; Li, L.C.; Zhou, Z.; Sha, C.; Liang, Z.Z.; Yang, J.Y. Microseismic monitoring and stability analysis of the left bank slope in Jinping first stage hydropower station in southwestern China. Int. J. Rock Mech. Min. Sci. 2011, 48, 950–963. [Google Scholar] [CrossRef]
- Sun, Y.; Shi, B.; Zhang, D.; Tong, H.; Wei, G.; Xu, H. Internal Deformation Monitoring of Slope Based on BOTDR. J. Sens. 2016, 2016, 9496285. [Google Scholar] [CrossRef]
- Zhu, H.H.; Shi, B.; Yan, J.F.; Zhang, J.; Wang, J. Investigation of the evolutionary process of a reinforced model slope using a fiber-optic monitoring network. Eng. Geol. 2015, 186, 34–43. [Google Scholar] [CrossRef]
- Carter, M.; Bentley, S.P. The geometry of slip surfaces beneath landslides: Predictions from surface measurements. Can. Geotech. J. 1985, 22, 234–238. [Google Scholar] [CrossRef]
- Cheng, L.; Li, Y.; Ma, Y.; Li, M.; Tong, F. The sensing principle of a new type of crack sensor based on linear macro-bending loss of an optical fiber and its experimental investigation. Sens. Actuators A Phys. 2018, 272, 53–61. [Google Scholar] [CrossRef]
- Zhao, J.; Bao, T.; Amjad, U. Optical fiber sensing of small cracks in isotropic homogeneous materials. Sens. Actuators A Phys. 2015, 225, 133–138. [Google Scholar] [CrossRef]
- Ye, X.W.; Su, Y.H.; Han, J.P. Structural health monitoring of civil infrastructure using optical fiber sensing technology: A comprehensive review. Sci. World J. 2014, 2014, 652329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.-W.; Liu, B.; Liu, P.; Zhao, B.; Feng, Z.-Y. Model experimental study of landslides based on combined optical fiber transducer and different types of boreholes. CATENA 2017, 155, 30–40. [Google Scholar] [CrossRef]
- Peter, G.; Staubli, R.K. Statistical Properties of Rayleigh Backscattering in Single-Mode Fibers. IEEE/OSA J. Light. Technol 1993, 11, 1895–1899. [Google Scholar] [CrossRef]
- Zhi, W.; Ren, G.; Lou, S.; Jian, S. Loss properties due to Rayleigh scattering in different types of fiber. Opt. Express 2003, 11, 39–47. [Google Scholar] [CrossRef]
- Liu, P.; Liu, Z.; Zhou, C. Deep lateral displacement sensing experiment for rod–fiber coupling structure based on macrobending loss. Sens. Actuators A Phys. 2022, 336, 113410. [Google Scholar] [CrossRef]
- Tateda, M.; Horiguchi, T. Advances in Optical Time-Domain Reflectometry. J. Light. Technol. 1989, 7, 1217–1224. [Google Scholar] [CrossRef]
- Kourkoulis, R.; Gelagoti, F.; Anastasopoulos, I.; Gazetas, G. Slope Stabilizing Piles and Pile-Groups: Parametric Study and Design Insights. J. Geotech. Geoenviron. Eng. 2011, 137, 663–677. [Google Scholar] [CrossRef] [Green Version]
- Philen, D.L.; White, I.A.; Kuhl, J.F.; Mettler, S.C. Single-Mode Fiber OTDR: Experiment and Theory. IEEE J. Quantum Electron. 1982, 18, 1499–1508. [Google Scholar] [CrossRef]
- Murakami, Y.; Tsuchiya, H. Bending losses of coated single-mode optical fibers. IEEE J. Quantum Electron. 1978, 14, 495–501. [Google Scholar] [CrossRef]
- Yoshino, T.; Inoue, K.; Kobayashi, Y. Spiral fibre microbend sensors. IEE Proc. Optoelectron. 1997, 144, 145–150. [Google Scholar] [CrossRef]
- Azzouz, A.S.; Krizek, R.J.; Corotis, R.B. Regression Analysis of Soil Compressibility. Soils Found. 1976, 16, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Mikkelsen, P.E. Advances in inclinometer data analysis. In Proceedings of the Symposium on Field Measurements in Geomechanics, Oslo, Norway, 23–26 September 2003. [Google Scholar]
- Zheng, Y.; Zhu, Z.-W.; Li, W.-J.; Gu, D.-M.; Xiao, W. Experimental research on a novel optic fiber sensor based on OTDR for landslide monitoring. Measurement 2019, 148, 106926. [Google Scholar] [CrossRef]
- Do Carmo, M.P. Differential Geometry of Curves and Surfaces: Revised and Updated, 2nd ed.; Courier Dover Publications: New York, NY, USA, 2016; ISBN 0486817970. [Google Scholar]
Fitting Equation | a1 | a2 | a3 | b | Regression Coefficient |
---|---|---|---|---|---|
Primary | / | / | 26.66 | −8.307 | 0.9362 |
Secondary | / | −31.21 | 57.07 | −15.47 | 0.9392 |
Cubic | 1652 | −2448 | 1218 | −198.5 | 0.9781 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Liu, Z.; Zhou, C. Measurement and Region Identification in Deep Displacement of Slopes Based on Rod-Fiber Coupling Structure. Sensors 2022, 22, 3623. https://doi.org/10.3390/s22103623
Liu P, Liu Z, Zhou C. Measurement and Region Identification in Deep Displacement of Slopes Based on Rod-Fiber Coupling Structure. Sensors. 2022; 22(10):3623. https://doi.org/10.3390/s22103623
Chicago/Turabian StyleLiu, Pengzhen, Zhen Liu, and Cuiying Zhou. 2022. "Measurement and Region Identification in Deep Displacement of Slopes Based on Rod-Fiber Coupling Structure" Sensors 22, no. 10: 3623. https://doi.org/10.3390/s22103623
APA StyleLiu, P., Liu, Z., & Zhou, C. (2022). Measurement and Region Identification in Deep Displacement of Slopes Based on Rod-Fiber Coupling Structure. Sensors, 22(10), 3623. https://doi.org/10.3390/s22103623