# Rapid Test Method for Multi-Beam Profile of Phased Array Antennas

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Theory and Methods

_{j}(j = 1, 2, …, M), where, E

_{j}= E(θ

_{j}, ϕ

_{j}). Equation (6) can be easily derived from Equation (5), as below,

- Install the PAA on the test system turntable and adjust the center of the antenna to coincide with the center of the rotation system,
- Use the beam controller to adjust the PAA to a certain main beam orientation (${\theta}_{0},\text{}{\phi}_{0}$) and test the radiation pattern ${E}_{0}$,
- Obtain the weighted element port excitation I of the designated beam orientation (${\theta}_{0},\text{}{\phi}_{0}$),
- Obtain the simulation radiation pattern F of all the elements in the array with the coupling factor being considered,
- Use Equation (10) to calculate the excitation coefficient C of this antenna,
- Obtain the element port excitation ${I}_{x}$ at the beam orientation (${\theta}_{x},{\phi}_{x}$), which is desired to be predicted,
- Calculate the radiation pattern ${E}_{x}$ of the beam orientation (${\theta}_{x},{\phi}_{x}$) using Equation (11),
- Adjust the PAA to the beam orientation (${\theta}_{x},{\phi}_{x}$) with the wave controller, and measure the actual radiation pattern $\tilde{{E}_{x}}$ of this beam orientation,
- Compare ${E}_{x}$ and $\tilde{{E}_{x}}$.

## 3. Results

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Anim, K.; Lee, J.-N.; Jung, Y.-B. High-Gain Millimeter-Wave Patch Array Antenna for Unmanned Aerial Vehicle Application. Sensors
**2021**, 21, 3914. [Google Scholar] [CrossRef] - Luo, Q.; Qi, Y.; Ye, P.; de Paulis, F.; Liu, L. The Application And Prospect of Phased Array Antenna in Satellite Communication. Radio Eng.
**2019**, 49, 1076–1084. [Google Scholar] - Zhou, K.Q.; Wang, H.C. Joint Ship and Artillery Snti-missile Technology based on Phased Array Radar. Firepower Command. Control
**2019**, 44, 161–165. [Google Scholar] - Torres, S.M.; Adams, R.; Curtis, C.D.; Forren, E.; Forsyth, D.E.; Ivić, I.R.; Priegnitz, D.; Thompson, J.; Warde, D.A. Adaptive-Weather-Surveillance and Multifunction Capabilities of the National Weather Radar Testbed Phased Array Radar. Proc. IEEE
**2016**, 104, 660–672. [Google Scholar] [CrossRef] - Srivastava, R.C. Applications of weather radar systems: A guide to uses of radar data in meteorology and hydrology By C.G. Collier, Ellis Harwood. J. Hydrol.
**1989**, 130, 408–409. [Google Scholar] [CrossRef] - Herd, J.S.; Conway, M.D. The Evolution to Modern Phased Array Architectures. Proc. IEEE
**2015**, 104, 519–529. [Google Scholar] [CrossRef] - Lee, S.H.; Kim, K.; Park, S.; Ahn, K.H.; Bang, S.I. Implementation of High Efficiency Amplifier with GaN Doherty Structure for LTE-Advanced Active Phased Arrays Antenna System. In Proceedings of the Symposium of the Korean Institute of Communications and Information Sciences; Korea Institute Of Communication Sciences: Seoul, Korea, 2014; pp. 1011–1012. [Google Scholar]
- Qi, Y.; Yang, G.; Liu, L.; Fan, J.; Orlandi, A.; Kong, H.; Yu, W.; Yang, Z. 5G Over-the-Air Measurement Challenges: Overview. IEEE Trans. Electromagn. Compat.
**2017**, 59, 1661–1670. [Google Scholar] [CrossRef] - Ruggerini, G.; Nicolaci, P.G.; Toso, G. A Ku-Band Magnified Active Tx/Rx Multibeam Antenna Based on a Discrete Constrained Lens. Electronics
**2021**, 10, 2824. [Google Scholar] [CrossRef] - Xu, Q.; Huang, Y.; Xing, L.; Song, C.; Tian, Z.; Alja’afreh, S.S.; Stanley, M. 3-D antenna radiation pattern reconstruction in a reverberation chamber using spherical wave decomposition. IEEE Trans. Antennas Propag.
**2017**, 65, 1728–1739. [Google Scholar] [CrossRef][Green Version] - Fróes, S.M.; Corral, P.; Novo, M.S.; Aljaro, M.; Lima, A.C.D.C. Antenna Radiation Pattern Measurement in a Non-Anechoic Chamber. IEEE Antennas Wirel. Propag. Lett.
**2019**, 18, 383–386. [Google Scholar] [CrossRef] - Loredo, S.; Leon, G.; Ayestaran, R.G.; Las-Heras, F. Reconstruction of Antenna Radiation Patterns From Phaseless Measurements in Nonanechoic Chambers. IEEE Antennas Wirel. Propag. Lett.
**2011**, 10, 1282–1285. [Google Scholar] [CrossRef] - Leonor, N.R.; Caldeirinha, R.F.; Sánchez, M.G.; Fernandes, T.R. A Three-Dimensional Directive Antenna Pattern Interpolation Method. IEEE Antennas Wirel. Propag. Lett.
**2015**, 15, 881–884. [Google Scholar] [CrossRef] - Petriţa, T.; Ignea, A. A new method for interpolation of 3D antenna pattern from 2D plane patterns. In Proceedings of the International Symposium on Electronics & Telecommunications, Timisoara, Romania, 15–16 November 2012; pp. 393–396. [Google Scholar] [CrossRef]
- Shang, J.-P.; Deng, Y.-B.; Jiang, S. Study on a fast measurement method of phased array antennas. In Proceedings of the 2008 8th International Symposium on Antennas, Propagation and EM Theory, Kunming, China, 2–5 November 2008; pp. 161–165. [Google Scholar] [CrossRef]
- Aumann, H.; Fenn, A.; Willwerth, F. Phased array antenna calibration and pattern prediction using mutual coupling measurements. IEEE Trans. Antennas Propag.
**1989**, 37, 844–850. [Google Scholar] [CrossRef] - Wang, Z.; Pang, C.; Li, Y.; Wang, X. A Method for Radiation Pattern Reconstruction of Phased-Array Antenna. IEEE Antennas Wirel. Propag. Lett.
**2019**, 19, 168–172. [Google Scholar] [CrossRef] - Zhou, J.; Wang, Z.; Pang, C.; Li, Y.; Wang, X. Pattern Reconstruction for Polarimetric Phased Array Antenna by Efficient Beam Measurement. IEEE Antennas Wirel. Propag. Lett.
**2021**, 20, 1312–1316. [Google Scholar] [CrossRef] - Zhang, J.; Pommerenke, D.; Fan, J. Determining Equivalent Dipoles Using a Hybrid Source-Reconstruction Method for Characterizing Emissions From Integrated Circuits. IEEE Trans. Electromagn. Compat.
**2017**, 59, 567–575. [Google Scholar] [CrossRef] - Huang, Q.; Fan, J. Machine Learning Based Source Reconstruction for RF Desense. IEEE Trans. Electromagn. Compat.
**2018**, 60, 1640–1647. [Google Scholar] [CrossRef] - Zhang, J.; Fan, J. Source Reconstruction for IC Radiated Emissions Based on Magnitude-Only Near-Field Scanning. IEEE Trans. Electromagn. Compat.
**2017**, 59, 557–566. [Google Scholar] [CrossRef] - Rezaei, H.; Meiguni, J.S.; Soerensen, M.; Jobava, R.G.; Khilkevich, V.; Fan, J.; Beetner, D.G.; Pommerenke, D. Source Reconstruction in Near Field Scanning using Inverse MoM for RFI Application. IEEE Int. Symp. Electromagn. Compat. Signal Power Integr.
**2020**, 62, 1628–1636. [Google Scholar] [CrossRef] - Kelley, D.; Stutzman, W. Array antenna pattern modeling methods that include mutual coupling effects. IEEE Trans. Antennas Propag.
**1993**, 41, 1625–1632. [Google Scholar] [CrossRef] - Pozar, D.W. A relation between the active input impedance and the active element pattern of a phased array. IEEE Trans. Antennas Propag.
**2003**, 51, 2486–2489. [Google Scholar] [CrossRef] - Pozar, D.M. The active element pattern. IEEE Trans. Antennas Propag.
**1994**, 42, 1176–1178. [Google Scholar] [CrossRef] - Haselwander, W.; Uhlmann, M.; Wustefeld, S.; Bock, M. Measurement on an Active Phased Array Antenna on a Near-Field Range and an Anechoic Far-Field Chamber. In Proceedings of the 2001 31st European Microwave Conference IEEE, London, UK, 24–26 September 2007. [Google Scholar]
- Gao, H.; Fan, W.; Wang, W.; Zhang, F.; Wang, Z.; Wu, Y.; Liu, Y.; Pedersen, G.F. On Uncertainty Investigation of mmWave Phased-Array Element Control With an All-On Method. IEEE Antennas Wirel. Propag. Lett.
**2020**, 19, 1993–1997. [Google Scholar] [CrossRef] - Salas-Natera, M.A.; Osorio, R. Analytical Evaluation of Uncertainty on Active Antenna Arrays. IEEE Trans. Aerosp. Electron. Syst.
**2012**, 48, 1903–1913. [Google Scholar] [CrossRef][Green Version] - Wang, J.; Yang, L.; Gong, S.; Fu, D.; Wang, Y. Study of wide-angle scanning phased array antenna measurement. J. Xidian Univ.
**2015**, 42, 40–44. [Google Scholar]

(15, 0) | 3 dB Beam Width (°) | Beam Orientation Accuracy θ (°) | First Left Side Lobe Peak (dB) | First Right Side Lobe Peak (dB) | Cross-Pol. (dB) ^{1} |
---|---|---|---|---|---|

Measured | 4.18 | 15.01 | −14.58 | −18.19 | 19.57 |

Predicted | 4.25 | 15.02 | −15.33 | −18.17 | 19.69 |

Deviation | 0.07 | 0.01 | −0.75 | 0.02 | 0.12 |

^{1}The cross-polarization is the maximum difference between the main polarization and the cross-polarization within a 3 dB beamwidth.

(30, 0) | 3 dB Beam Width (°) | Beam Orientation Accuracy θ (°) | First Left Side Lobe Peak (dB) | First Right Side Lobe Peak (dB) | Cross-Pol. (dB) ^{1} |
---|---|---|---|---|---|

Measured | 4.54 | 30.01 | −14.94 | −17.44 | −21.75 |

Predicted | 4.66 | 30.01 | −15.55 | −17.76 | −24.46 |

Deviation | 0.12 | 0 | 0.61 | 0.32 | 2.71 |

^{1}The cross-polarization is the maximum difference between the main polarization and the cross-polarization within a 3 dB beamwidth.

(60, 0) | 3 dB Beam Width (°) | Beam Orientation Accuracy θ (°) | First Left Side Lobe Peak (dB) | First Right Side Lobe Peak (dB) | Cross-Pol. (dB) ^{1} |
---|---|---|---|---|---|

Measured | 7.84 | 59.99 | −11.79 | −22.62 | −14.01 |

Predicted | 8.11 | 59.97 | −13.21 | −22.07 | −12.95 |

Deviation | 0.27 | 0.02 | 1.42 | 0.55 | −1.06 |

^{1}The cross-polarization is the maximum difference between the main polarization and the cross-polarization within a 3 dB beamwidth.

Item | Source Reconstruction Method | Pattern Reconstruction Method | Conventional Method |
---|---|---|---|

Coefficient C calculating (min) | 1 | 0 | 0 |

Beam patterns measured number | 1 | 80 (EST) | 217 |

Beam patterns measured time (min) | 30 | 2400 | 6510 |

Beam patterns projection time (min) | 108 | 204 (EST) | - |

Total duration (min) | 139 | 2604 | 6510 |

Time cost reduction (%) | 97% | 40% | - |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Luo, Q.; Zhou, Y.; Qi, Y.; Ye, P.; de Paulis, F.; Liu, L. Rapid Test Method for Multi-Beam Profile of Phased Array Antennas. *Sensors* **2022**, *22*, 47.
https://doi.org/10.3390/s22010047

**AMA Style**

Luo Q, Zhou Y, Qi Y, Ye P, de Paulis F, Liu L. Rapid Test Method for Multi-Beam Profile of Phased Array Antennas. *Sensors*. 2022; 22(1):47.
https://doi.org/10.3390/s22010047

**Chicago/Turabian Style**

Luo, Qingchun, Yantao Zhou, Yihong Qi, Pu Ye, Francesco de Paulis, and Lie Liu. 2022. "Rapid Test Method for Multi-Beam Profile of Phased Array Antennas" *Sensors* 22, no. 1: 47.
https://doi.org/10.3390/s22010047