# Improvement of Quantum Approximate Optimization Algorithm for Max–Cut Problems

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Modified QAOA

## 3. Results

## 4. Discussion, Future Lines of Research, and Limitations

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

I4.0 | Industry 4.0 |

IIoT | Industrial Internet of Things |

MNO | Mobile Network Operator |

NB–IoT | Narrowband Internet of Things |

QAOA | Quantum Approximate Optimization Approach |

## References

- Lee, J.; Bagheri, B.; Kao, H.A. A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett.
**2015**, 3, 18–23. [Google Scholar] [CrossRef] - Song, H.; Rawat, D.; Jeschke, S.; Brecher, C. (Eds.) Cyber-Physical Systems; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Schuh, G.; Zeller, V.; Stroh, M.F.; Harder, P. Finding the Right Way Towards a CPS—A Methodology for Individually Selecting Development Processes for Cyber-Physical Systems. In Collaborative Networks and Digital Transformation; Camarinha-Matos, L.M., Afsarmanesh, H., Antonelli, D., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 81–90. [Google Scholar]
- Lodgaard, E.; Dransfeld, S. Organizational aspects for successful integration of human-machine interaction in the Industry 4.0 era. Procedia Cirp
**2020**, 88, 218–222. [Google Scholar] [CrossRef] - Nardo, M.; Forino, D.; Murino, T. The evolution of man–machine interaction: The role of human in Industry 4.0 paradigm. Prod. Manuf. Res.
**2020**, 8, 20–34. [Google Scholar] [CrossRef] [Green Version] - Ardanza, A.; Moreno, A.; Segura, Á.; de la Cruz, M.; Aguinaga, D. Sustainable and flexible industrial human machine interfaces to support adaptable applications in the Industry 4.0 paradigm. Int. J. Prod. Res.
**2019**, 57, 4045–4059. [Google Scholar] [CrossRef] - Grangel-González, I.; Halilaj, L.; Coskun, G.; Auer, S.; Collarana, D.; Hoffmeister, M. Towards a Semantic Administrative Shell for Industry 4.0 Components. In Proceedings of the 2016 IEEE Tenth International Conference on Semantic Computing (ICSC), Laguna Hills, CA, USA, 4–6 February 2016; pp. 230–237. [Google Scholar] [CrossRef] [Green Version]
- Batty, M. Digital twins. Environ. Plan. B Urban Anal. City Sci.
**2018**, 45, 817–820. [Google Scholar] [CrossRef] - El Saddik, A. Digital Twins: The Convergence of Multimedia Technologies. IEEE Multimedia
**2018**, 25, 87–92. [Google Scholar] [CrossRef] - Qi, Q.; Tao, F. Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0: 360 Degree Comparison. IEEE Access
**2018**, 6, 3585–3593. [Google Scholar] [CrossRef] - Ma, H.; Govoni, M.; Galli, G. Quantum simulations of materials on near-term quantum computers. Npj Comput. Mater.
**2020**, 6, 1–8. [Google Scholar] [CrossRef] - Villalba-Diez, J.; Zheng, X. Quantum Strategic Organizational Design: Alignment in Industry 4.0 Complex-Networked Cyber-Physical Lean Management Systems. Sensors
**2020**, 20, 5856. [Google Scholar] [CrossRef] [PubMed] - Bortolini, M.; Ferrari, E.; Gamberi, M.; Pilati, F.; Faccio, M. Assembly system design in the Industry 4.0 era: A general framework. IFAC-PapersOnLine
**2017**, 50, 5700–5705. [Google Scholar] [CrossRef] - Cohen, Y.; Naseraldin, H.; Chaudhuri, A.; Pilati, F. Assembly systems in Industry 4.0 era: A road map to understand Assembly 4.0. Int. J. Adv. Manuf. Technol.
**2019**, 105, 4037–4054. [Google Scholar] [CrossRef] - Deza, M.; Laurent, M. Geometry of Cuts and Metrics, 1st ed.; Algorithms and Combinatorics; Springer: Berlin/Heidelberg, Germany, 1997; Volume 15. [Google Scholar]
- Benlic, U.; Hao, J.K. Breakout Local Search for the Max-Cutproblem. Eng. Appl. Artif. Intell.
**2013**, 26, 1162–1173. [Google Scholar] [CrossRef] [Green Version] - Vesselinova, N.; Steinert, R.; Perez-Ramirez, D.F.; Boman, M. Learning combinatorial optimization on graphs: A survey with applications to networking. IEEE Access
**2020**, 8, 120388–120416. [Google Scholar] [CrossRef] - Beloborodov, D.; Ulanov, A.E.; Foerster, J.N.; Whiteson, S.; Lvovsky, A. Reinforcement learning enhanced quantum-inspired algorithm for combinatorial optimization. Mach. Learn. Sci. Technol.
**2020**, 2, 025009. [Google Scholar] [CrossRef] - Gu, S.; Yang, Y. A Deep Learning Algorithm for the Max-Cut Problem Based on Pointer Network Structure with Supervised Learning and Reinforcement Learning Strategies. Mathematics
**2020**, 8, 298. [Google Scholar] [CrossRef] [Green Version] - Farhi, E.; Goldstone, J.; Gutmann, S.; Neven, H. Quantum Algorithms for Fixed Qubit Architectures. arXiv
**2017**, arXiv:1703.06199. [Google Scholar] - Farhi, E.; Goldstone, J.; Gutmann, S. A Quantum Approximate Optimization Algorithm. arXiv
**2014**, arXiv:1411.4028. [Google Scholar] - Guerreschi, G.G.; Matsuura, A.Y. QAOA for Max-Cut requires hundreds of qubits for quantum speed-up. Sci. Rep.
**2019**, 9, 6903. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Villalba-Diez, J. Value Stream Network Quantum Approximate Optimization Algorithm. 2021. Available online: https://shorturl.at/hnpC3 (accessed on 1 December 2021).
- Wille, R.; Meter, R.; Naveh, Y. IBM’s Qiskit Tool Chain: Working with and Developing for Real Quantum Computers. In Proceedings of the 2019 Design, Automation Test in Europe Conference Exhibition (DATE), Florence, Italy, 25–29 March 2019; pp. 1234–1240. [Google Scholar] [CrossRef]
- Jekel, C.; Venter, G.; Venter, M.; Stander, N.; Haftka, R. Similarity measures for identifying material parameters from hysteresis loops using inverse analysis. Int. J. Mater. Form.
**2019**, 12, 355–378. [Google Scholar] [CrossRef] - Fuchs, F.G.; Kolden, H.Ø.; Aase, N.H.; Sartor, G. Efficient Encoding of the Weighted MAX-k-CUT on a Quantum Computer Using QAOA. SN Comput. Sci.
**2021**, 2, 1–14. [Google Scholar] [CrossRef]

**Figure 4.**QAOA—Farhi et al. [20].

**Table 1.**Results comparison for different measures for identifying curve similarity [25].

Analytic vs. | ||
---|---|---|

Farhi et al. | Villalba et al. | |

Directed Hausdorff distance | 8.22 | 3.84 |

Discrete Fréchet distance | 10.89 | 3.84 |

Dynamic Time Wrapping | 28.70 | 7.13 |

Partial Curve Mapping | 1.6893 | 0.3223 |

Area between two curves | 1.2744 | 0.3642 |

Curve-Length distance metric | 141.21 | 26.23 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Villalba-Diez, J.; González-Marcos, A.; Ordieres-Meré, J.B.
Improvement of Quantum Approximate Optimization Algorithm for Max–Cut Problems. *Sensors* **2022**, *22*, 244.
https://doi.org/10.3390/s22010244

**AMA Style**

Villalba-Diez J, González-Marcos A, Ordieres-Meré JB.
Improvement of Quantum Approximate Optimization Algorithm for Max–Cut Problems. *Sensors*. 2022; 22(1):244.
https://doi.org/10.3390/s22010244

**Chicago/Turabian Style**

Villalba-Diez, Javier, Ana González-Marcos, and Joaquín B. Ordieres-Meré.
2022. "Improvement of Quantum Approximate Optimization Algorithm for Max–Cut Problems" *Sensors* 22, no. 1: 244.
https://doi.org/10.3390/s22010244