Heart Rate and Distance Measurement of Two Multisport Activity Trackers and a Cellphone App in Different Sports: A Cross-Sectional Validation and Comparison Field Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Design and Procedures
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carrier, B.; Barrios, B.; Jolley, B.D.; Navalta, J.W. Validity and Reliability of Physiological Data in Applied Settings Measured by Wearable Technology: A Rapid Systematic Review. Technologies 2020, 8, 70. [Google Scholar] [CrossRef]
- de Zambotti, M.; Cellini, N.; Goldstone, A.; Colrain, I.M.; Baker, F.C. Wearable Sleep Technology in Clinical and Research Settings. Med. Sci. Sports Exerc. 2019, 51, 1538–1557. [Google Scholar] [CrossRef]
- Gilgen-Ammann, R.; Schweizer, T.; Wyss, T. RR interval signal quality of a heart rate monitor and an ECG Holter at rest and during exercise. Eur. J. Appl. Physiol. 2019, 119, 1525–1532. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, A.; Mikalsen, M.H.; Woldaregay, A.Z.; Muzny, M.; Hartvigsen, G.; Hopstock, L.A.; Grimsgaard, S. Using Fitness Trackers and Smartwatches to Measure Physical Activity in Research: Analysis of Consumer Wrist-Worn Wearables. J. Med. Internet Res. 2018, 20, e110. [Google Scholar] [CrossRef]
- Boudreaux, B.D.; Hebert, E.P.; Hollander, D.B.; Williams, B.M.; Cormier, C.L.; Naquin, M.R.; Gillan, W.W.; Gusew, E.E.; Kraemer, R.R. Validity of Wearable Activity Monitors during Cycling and Resistance Exercise. Med. Sci. Sports Exerc. 2018, 50, 624–633. [Google Scholar] [CrossRef] [PubMed]
- Tedesco, S.; Sica, M.; Ancillao, A.; Timmons, S.; Barton, J.; O’Flynn, B. Accuracy of consumer-level and research-grade activity trackers in ambulatory settings in older adults. PLoS ONE 2019, 14, e0216891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, H.-W.; Yang, C.-C. Accuracy of Optical Heart Rate Sensing Technology in Wearable Fitness Trackers for Young and Older Adults: Validation and Comparison Study. JMIR Mhealth Uhealth 2020, 8, e14707. [Google Scholar] [CrossRef] [PubMed]
- Höchsmann, C.; Knaier, R.; Eymann, J.; Hintermann, J.; Infanger, D.; Schmidt-Trucksäss, A. Validity of activity trackers, smartphones, and phone applications to measure steps in various walking conditions. Scand. J. Med. Sci. Sports 2018, 28, 1818–1827. [Google Scholar] [CrossRef]
- Müller, A.M.; Wang, N.X.; Yao, J.; Tan, C.S.; Low, I.C.C.; Lim, N.; Tan, J.; Tan, A.; Müller-Riemenschneider, F. Heart Rate Measures From Wrist-Worn Activity Trackers in a Laboratory and Free-Living Setting: Validation Study. JMIR Mhealth Uhealth 2019, 7, e14120. [Google Scholar] [CrossRef] [PubMed]
- Düking, P.; Giessing, L.; Frenkel, M.O.; Koehler, K.; Holmberg, H.-C.; Sperlich, B. Wrist-Worn Wearables for Monitoring Heart Rate and Energy Expenditure While Sitting or Performing Light-to-Vigorous Physical Activity: Validation Study. JMIR Mhealth Uhealth 2020, 8, e16716. [Google Scholar] [CrossRef]
- Henriksen, A.; Svartal, F.; Grimsgaard, S.; Hartvigsen, G.; Hopstock, L. Polar Vantage and Oura physical activity and sleep trackers: A validation and comparison study. medRxiv 2021. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Wen, D.; Liang, L.; Jia, Y.; Gao, L.; Lei, J. Evaluating the Validity of Current Mainstream Wearable Devices in Fitness Tracking Under Various Physical Activities: Comparative Study. JMIR Mhealth Uhealth 2018, 6, e94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budig, M.; Höltke, V.; Keiner, M. Accuracy of optical heart rate measurement and distance measurement of a fitness tracker and their consequential use in sports. Ger. J. Exerc. Sport Res. 2019, 49, 402–409. [Google Scholar] [CrossRef]
- Navalta, J.W.; Montes, J.; Bodell, N.G.; Salatto, R.W.; Manning, J.W.; DeBeliso, M. Concurrent heart rate validity of wearable technology devices during trail running. PLoS ONE 2020, 15, e0238569. [Google Scholar] [CrossRef] [PubMed]
- Olstad, B.H. Optical Heart Rate in Swimming: A Pilot Study; Norwegian School of Sport Sciences (NIH): Oslo, Norway, 2018. [Google Scholar] [CrossRef]
- Olstad, B.H.; Bjørlykke, V.; Olstad, D.S. Maximal Heart Rate for Swimmers. Sports 2019, 7, 235. [Google Scholar] [CrossRef] [Green Version]
- Olstad, B.H.; Zinner, C. Validation of the Polar OH1 and M600 optical heart rate sensors during front crawl swim training. PLoS ONE 2020, 15, e0231522. [Google Scholar] [CrossRef] [Green Version]
- Benson, A.C.; Lyndell, B.; Gordon, B.A. Reliability and validity of a GPS-enabled iPhoneTM “app” to measure physical activity. J. Sports Sci. 2015, 33, 1421–1428. [Google Scholar] [CrossRef]
- Gilgen-Ammann, R.; Schweizer, T.; Wyss, T. Accuracy of Distance Recordings in Eight Positioning-Enabled Sport Watches: Instrument Validation Study. JMIR Mhealth Uhealth 2020, 8, e17118. [Google Scholar] [CrossRef]
- Düking, P.; Fuss, F.K.; Holmberg, H.-C.; Sperlich, B. Recommendations for Assessment of the Reliability, Sensitivity, and Validity of Data Provided by Wearable Sensors Designed for Monitoring Physical Activity. JMIR Mhealth Uhealth 2018, 6, e102. [Google Scholar] [CrossRef]
- Nelson, B.W.; Low, C.A.; Jacobson, N.; Areán, P.; Torous, J.; Allen, N.B. Guidelines for wrist-worn consumer wearable assessment of heart rate in biobehavioral research. NPJ Digit. Med. 2020, 3, 90. [Google Scholar] [CrossRef]
- Mühlen, J.M.; Stang, J.; Lykke Skovgaard, E.; Judice, P.B.; Molina-Garcia, P.; Johnston, W.; Sardinha, L.B.; Ortega, F.B.; Caulfield, B.; Bloch, W.; et al. Recommendations for determining the validity of consumer wearable heart rate devices: Expert statement and checklist of the INTERLIVE Network. Br. J. Sports Med. 2021, 55, 767–779. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.M.; Jackson, A.S. Exercise Concepts, Calculations, and Computer Applications; Benchmark Press: Carmel, IN, USA, 1990. [Google Scholar]
- German Society for Sports Medicine and Prevention [DGSP]. Leitlinie Vorsorgeuntersuchung im Sport. Available online: https://daten2.verwaltungsportal.de/dateien/seitengenerator/leitlinie_vorsorgeuntersuchung_4.10.2007-anlage-1.pdf (accessed on 8 February 2021).
- Sander, A.; Keiner, M.; Schlumberger, A.; Wirth, K.; Schmidtbleicher, D. Effects of Functional Exercises in the Warm-up on Sprint Performances. J. Strength Cond. Res. 2013, 27, 995–1001. [Google Scholar] [CrossRef] [PubMed]
- Garmin Ltd. Forerunner 945 Owner’s Manual. Available online: https://www8.garmin.com/manuals/webhelp/forerunner945/EN-US/Forerunner_945M_OM_EN-US.pdf (accessed on 11 March 2021).
- Polar Electro Oy. Polar Ignite User Manual. Available online: https://support.polar.com/e_manuals/ignite/polar-ignite-user-manual-english/manual.pdf (accessed on 20 January 2021).
- Polar Electro Oy. Polar H10 User Manual. Available online: https://support.polar.com/e_manuals/H10_HR_sensor/Polar_H10_user_manual_English/manual.pdf (accessed on 20 January 2021).
- Karvonen, J.; Chwalbinska-Moneta, J.; Saynajakangas, S. Comparison of Heart Rates Measured by ECG and Microcomputer. Physician Sportsmed. 1984, 12, 65–69. [Google Scholar] [CrossRef]
- MagicMaps. North-Rhine-Westphalia 3D, the Interactive Map. Version 1.5. Available online: https://www.magicmaps.de/service/ (accessed on 19 January 2021).
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Wahl, Y.; Düking, P.; Droszez, A.; Wahl, P.; Mester, J. Criterion-Validity of Commercially Available Physical Activity Tracker to Estimate Step Count, Covered Distance and Energy Expenditure during Sports Conditions. Front Physiol 2017, 8, 725. [Google Scholar] [CrossRef]
- Shcherbina, A.; Mattsson, C.M.; Waggott, D.; Salisbury, H.; Christle, J.W.; Hastie, T.; Wheeler, M.T.; Ashley, E.A. Accuracy in Wrist-Worn, Sensor-Based Measurements of Heart Rate and Energy Expenditure in a Diverse Cohort. J. Pers. Med. 2017, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Sage J. 1999, 8, 135–160. [Google Scholar] [CrossRef]
- Reddy, R.K.; Pooni, R.; Zaharieva, D.P.; Senf, B.; El Youssef, J.; Dassau, E.; Doyle III, F.J.; Clements, M.A.; Rickels, M.R.; Patton, S.R.; et al. Accuracy of Wrist-Worn Activity Monitors During Common Daily Physical Activities and Types of Structured Exercise: Evaluation Study. JMIR Mhealth Uhealth 2018, 6, e10338. [Google Scholar] [CrossRef]
- Cosoli, G.; Spinsante, S.; Scalise, L. Wrist-worn and chest-strap wearable devices: Systematic review on accuracy and metrological characteristics. Measurement 2020, 159, 107789. [Google Scholar] [CrossRef]
- Gorny, A.W.; Liew, S.J.; Tan, C.S.; Müller-Riemenschneider, F. Fitbit Charge HR Wireless Heart Rate Monitor: Validation Study Conducted Under Free-Living Conditions. JMIR Mhealth Uhealth 2017, 5, e157. [Google Scholar] [CrossRef]
- Muñoz-López, A.; Granero-Gil, P.; Pino-Ortega, J.; De Hoyo, M. The validity and reliability of a 5-hz GPS device for quantifying athletes’ sprints and movement demands specific to team sports. J. Hum. Sport Exerc. 2017, 12, 156–166. [Google Scholar] [CrossRef]
- Hoppe, M.W.; Baumgart, C.; Polglaze, T.; Freiwald, J. Validity and reliability of GPS and LPS for measuring distances covered and sprint mechanical properties in team sports. PLoS ONE 2018, 13, e0192708. [Google Scholar] [CrossRef] [Green Version]
- Tierney, P.; Clarke, N. A Comparison of a Smartphone App with Other GPS Tracking Type Devices Employed in Football. Exerc. Med. 2019, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Mooney, R.; Quinlan, L.R.; Corley, G.; Godfrey, A.; Osborough, C.; ÓLaighin, G. Evaluation of the Finis Swimsense® and the Garmin Swim™ activity monitors for swimming performance and stroke kinematics analysis. PLoS ONE 2017, 12, e0170902. [Google Scholar] [CrossRef] [PubMed]
- Duncan, M.J.; Wunderlich, K.; Zhao, Y.; Faulkner, G. Walk this way: Validity evidence of iphone health application step count in laboratory and free-living conditions. Phys. Act. Health Exerc. 2018, 36, 1695–1704. [Google Scholar] [CrossRef] [PubMed]
- Cossell, A.J. Accuracy of MOOV NOWTM Exercise Performance Measures In Recreational Swimmers. 2019. Available online: https://soar.wichita.edu/bitstream/handle/10057/16396/t19005s_Cossell_Sequester.pdf?sequence=1&isAllowed=y (accessed on 20 January 2021).
- Silva, A.G.; Simões, P.; Queirós, A.; Rodrigues, M.; Rocha, N.P. Mobile Apps to Quantify Aspects of Physical Activity: A Systematic Review on its Reliability and Validity. J. Med. Syst. 2020, 44, 51. [Google Scholar] [CrossRef]
HR Data | MAE | MAPE % | Min | Max | SD +/− | |
HR all data (w/o swim) | Garmin vs. Chest Strap H10 | 3.29 | 2.85 | 0.00 | 21.25 | 3.89 |
Polar Ignite vs. Chest Strap H10 | 3.23 | 2.80 | 0.00 | 23.36 | 4.25 | |
Garmin vs. Polar Ignite | 3.23 | 2.75 | 0.00 | 19.58 | 5.11 | |
Resting HR all data | Garmin vs. Chest Strap H10 | 2.71 | 2.93 | 0.43 | 5.62 | 1.14 |
Polar Ignite vs. Chest Strap H10 | 2.69 | 2.91 | 0.35 | 8.48 | 1.96 | |
Garmin vs. Polar Ignite | 1.03 | 1.09 | 0.00 | 4.80 | 1.12 | |
HR interval 1.6 km | Garmin vs. Chest Strap H10 | 1.58 | 1.23 | 0.00 | 5.44 | 1.25 |
Polar Ignite vs. Chest Strap H10 | 3.32 | 2.57 | 0.00 | 8.48 | 2.17 | |
Garmin vs. Polar Ignite | 3.69 | 2.88 | 0.00 | 8.28 | 2.01 | |
Swim | MAE | MAPE % | Min | Max | SD +/− | |
HR all data (with swim) | Garmin vs. Chest Strap H10 | 7.96 | 7.18 | 0.00 | 52.85 | 13.16 |
Polar Ignite vs. Chest Strap H10 | 7.54 | 6.80 | 0.00 | 50.48 | 11.96 | |
Garmin vs. Polar Ignite | 3.76 | 3.19 | 0.00 | 44.00 | 5.54 | |
HR swim 500 m | Garmin vs. Chest Strap H10 | 3.61 | 3.29 | 1.56 | 9.75 | 1.59 |
Polar Ignite vs. Chest Strap H10 | 9.45 | 8.61 | 0.11 | 14.56 | 2.67 | |
Garmin vs. Polar Ignite | 6.79 | 5.99 | 0.06 | 12.53 | 1.83 | |
HR swim 1000 m | Garmin vs. Chest Strap H10 | 42.72 | 55.32 | 14.31 | 52.85 | 6.04 |
Polar Ignite vs. Chest Strap H10 | 39.44 | 51.08 | 9.07 | 50.48 | 6.71 | |
Garmin vs. Polar Ignite | 3.28 | 2.74 | 0.03 | 20.81 | 3.07 |
Discipline | Activity Tracker vs. Criterion Measurement | MAE | MAPE % | Min | Max | SD +/− |
---|---|---|---|---|---|---|
All data | Garmin 945 | 21.27 | 0.81 | −60.00 | 120.00 | 25.80 |
Polar Ignite | 66.06 | 2.40 | −30.00 | 500.00 | 58.88 | |
Beat App | 59.29 | 1.67 | 0.00 | 310.00 | 48.93 | |
3 km walk stadium | Garmin 945 | 46.39 | 1.55 | −60.00 | 120.00 | 52.99 |
Polar Ignite | 117.22 | 3.91 | −30.00 | 260.00 | 88.46 | |
Beat App | 80.28 | 2.68 | −70.00 | 310.00 | 67.46 | |
3 km run stadium | Garmin 945 | 43.06 | 1.44 | −30.00 | 110.00 | 38.18 |
Polar Ignite | 56.39 | 1.88 | −80.00 | 140.00 | 53.50 | |
Beat App | 80.00 | 2.67 | 30.00 | 190.00 | 31.08 | |
1.6 km interval run stadium | Garmin 945 | 26.39 | 1.65 | −30.00 | 90.00 | 30.16 |
Polar Ignite | 42.50 | 2.66 | −50.00 | 150.00 | 44.49 | |
Beat App | 53.61 | 3.35 | −40.00 | 100.00 | 24.16 | |
3.1 km forest run | Garmin 945 | 21.67 | 0.69 | 0.00 | 100.00 | 23.60 |
Polar Ignite | 146.67 | 4.67 | −290.00 | 10.00 | 62.62 | |
Beat App | 32.22 | 1.03 | −110.00 | 90.00 | 43.67 | |
Swim 500 m | Garmin 945 | 4.17 | 0.42 | −50.00 | 50.00 | 14.57 |
Polar Ignite | 45.83 | 4.58 | −150.00 | 500.00 | 122.11 | |
Swim 1000 m | Garmin 945 | 9.72 | 0.97 | −50.00 | 100.00 | 25.32 |
Polar Ignite | 17.36 | 1.74 | −150.00 | 100.00 | 39.71 | |
MTB1 4.34 km | Garmin 945 | 13.61 | 0.31 | −40.00 | 10.00 | 10.91 |
Polar Ignite | 45.83 | 1.06 | −190.00 | 0.00 | 30.65 | |
Beat App | 30.00 | 0.69 | −130.00 | 60.00 | 41.40 | |
MTB2 4.34 km | Garmin 945 | 10.56 | 0.24 | −20.00 | 30.00 | 13.69 |
Polar Ignite | 37.22 | 0.86 | −110.00 | 110.00 | 42.95 | |
Beat App | 40.56 | 0.93 | −240.00 | 160.00 | 65.71 | |
Speed bike 31.5 km | Garmin 945 | 15.83 | 0.05 | −100.00 | 20.00 | 22.74 |
Polar Ignite | 85.56 | 0.27 | −40.00 | 180.00 | 45.43 | |
Beat App | 98.33 | 0.31 | −90.00 | 260.00 | 69.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Budig, M.; Keiner, M.; Stoohs, R.; Hoffmeister, M.; Höltke, V. Heart Rate and Distance Measurement of Two Multisport Activity Trackers and a Cellphone App in Different Sports: A Cross-Sectional Validation and Comparison Field Study. Sensors 2022, 22, 180. https://doi.org/10.3390/s22010180
Budig M, Keiner M, Stoohs R, Hoffmeister M, Höltke V. Heart Rate and Distance Measurement of Two Multisport Activity Trackers and a Cellphone App in Different Sports: A Cross-Sectional Validation and Comparison Field Study. Sensors. 2022; 22(1):180. https://doi.org/10.3390/s22010180
Chicago/Turabian StyleBudig, Mario, Michael Keiner, Riccardo Stoohs, Meike Hoffmeister, and Volker Höltke. 2022. "Heart Rate and Distance Measurement of Two Multisport Activity Trackers and a Cellphone App in Different Sports: A Cross-Sectional Validation and Comparison Field Study" Sensors 22, no. 1: 180. https://doi.org/10.3390/s22010180
APA StyleBudig, M., Keiner, M., Stoohs, R., Hoffmeister, M., & Höltke, V. (2022). Heart Rate and Distance Measurement of Two Multisport Activity Trackers and a Cellphone App in Different Sports: A Cross-Sectional Validation and Comparison Field Study. Sensors, 22(1), 180. https://doi.org/10.3390/s22010180