Towards Characterizing and Developing Formation and Migration Cues in Seafloor Sand Waves on Topology, Morphology, Evolution from High-Resolution Mapping via Side-Scan Sonar in Autonomous Underwater Vehicles
Abstract
:1. Introduction
2. Side Scan Sonar Principle
3. Basic ELM
4. Template Matching
5. Sand Wave Detection and Morphological, Geometrical, Topological Characterization with Echo Intensity
5.1. Echo Waveform Preprocessing
5.1.1. Echo Waveform Extraction
5.1.2. Time Varying Gain Correction
5.1.3. Speed Correction
5.1.4. EEMD Denoising
- (1)
- Add a white noise with the given amplitude to the original signal in echo intensity;
- (2)
- Perform EMD [60] to the signal in echo intensity with the added white noise to obtain Intrinsic Mode Function (IMF) components and one residual component, whereas the definition and acquisition process of IMF are relegated to Appendix A;
- (3)
- Repeat with the given number of trials. In every trial, the number of IMF , is a constant. All the trials could be written as,where is the th original signal in echo intensity; is the added white noise of the th trial; is the th IMF component of the th trial; is the residual component of the th trial;
- (4)
- Calculate the ensemble mean of all trials and the final decomposition result of the original signal in echo intensity by EEMD could be expressed as,where is the number of trials, and is the residual component of EEMD;
- (5)
- To eliminate the noise and maintain the integrity of useful information, the first IMFs are selected to be processed with the EEMD denoising by a universal threshold formula as follows:where is the standard deviation of the noise, is the length of .
- (6)
- Finally, EEMD denoising is given by:
5.2. Sand Wave Online Detection
5.2.1. Initialization Phase
- (1)
- Input a small chunk of echo intensity sub-sequence . Set the number of hidden neurons as , the training sample , the number of in as , the target output matrix as and class label as ;
- (2)
- Randomly assign the input weights and bias . Set the output of the th hidden node with respect to the input as activation function ;
- (3)
- Calculate the initial hidden layer output matrix :
- (4)
- Estimate the initial output weight .
- (5)
- Set .
5.2.2. Sequential Learning Phase
- (6)
- Set the number of training data in the th group as . Input the th echo intensity sub-sequence chunk . Set the target output matrix of those training data as ;
- (7)
- Compute the partial hidden layer output matrix
- (8)
- Calculate the output weight ,
5.2.3. Test Phase
- (9)
- Input test samples . Set the number of test samples as ;
- (10)
- Predict class labels
5.3. Morphological, Geometrical, Topological Characterization
5.3.1. Morphological Template Making
5.3.2. Morphological Matching Criterion
5.3.3. Zero-Crossing Rate
6. Simulation Experiment and Results Analysis
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- Each Intrinsic Mode Function (IMF) of the ith ping echo intensity is defined as a function that must satisfy the following conditions,
- (1)
- In the whole data set, the number of extrema and the number of zero-crossings must be equal or differ at most by one;
- (2)
- At any point, the mean value of the envelope defined by the local maxima and the envelope defined by the local minima is zero.
- The EMD decomposition of the th ping echo intensity is according to the following steps:
- (1)
- Initialization: ;
- (2)
- Computation of the th IMF, :
- (a)
- Initialization:
- (b)
- Find the local maxima and minima of
- (c)
- Interpolate the local minima (resp. maxima) to get (resp ) by cubic spline
- (d)
- Compute the mean of these envelops:
- (e)
- Obtain the th component by
- (f)
- If the above two conditions of IMF are satisfied, then ; else, ;
- (3)
- Calculate residual component ;
- (4)
- If is not monotonic, go to step (2); otherwise, the decomposition is complete.
References
- Bellec, V.K.; Be, R.; Bjarnadóttir, L.R.; Albretsen, J.; Elvenes, S. Sandbanks, sandwaves and megaripples on Spitsbergenbanken, Barents Sea. Mar. Geol. 2019, 416, 105998. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, B.; Wu, G.; Borsje, B.W. Modeling the formation and migration of sand waves: The role of tidal forcing, sediment size and bed slope effects. Cont. Shelf Res. 2019, 190, 103986. [Google Scholar] [CrossRef]
- Blondeaux, P.; Vittori, G. A model to predict the migration of sand waves in shallow tidal seas. Cont. Shelf Res. 2016, 112, 31–45. [Google Scholar] [CrossRef]
- Zang, Z.; Liang, C.; Gao, F. Application of ROMS for Simulating Evolution and Migration of Tidal Sand Waves. In Proceedings of the Sixth International Conference on Asian and Pacific Coasts, Hong Kong, China, 14–16 December 2011. [Google Scholar]
- Knaapen, M.A.F.; Henegouw, C.N.V.B.; Hu, Y.Y. Quantifying bedform migration using multi-beam sonar. Geo Mar. Lett. 2005, 25, 306–314. [Google Scholar] [CrossRef] [Green Version]
- Giri, S.; Shimizu, Y. Numerical computation of sand dune migration with free surface flow. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef] [Green Version]
- Ye, Y. Submarine Sand Waves and Sand Ridges. Mar. Geo-Hazards China 2017, 523–554. [Google Scholar] [CrossRef]
- Fredsøe, J. On the development of dunes in erodible channels. J. Fluid Mech. 1974, 64, 1–16. [Google Scholar] [CrossRef]
- King, E.; Conley, D.; Masselink, G.; Leonardi, N.; McCarroll, R.; Scott, T. The impact of waves and tides on residual sand transport on a sediment-poor, energetic, and macrotidal continental shelf. J. Geophys. Res. Ocean. 2019, 124, 4974–5002. [Google Scholar] [CrossRef]
- Nienhuis, J.H.; Perron, J.T.; Kao, J.C.; Myrow, P.M. Wavelength selection and symmetry breaking in orbital wave ripples. J. Geophys. Res. Earth Surf. 2014, 119, 2239–2257. [Google Scholar] [CrossRef] [Green Version]
- Cappietti, L.; Chopard, B. A Lattice Boltzmann Study of the 2d Boundary Layer Created by AN Oscillating Plate. Int. J. Mod. Phys. C 2006, 17, 39–52. [Google Scholar] [CrossRef]
- Bagnold, R.A. Motion of waves in shallow water. Interaction between waves and sand bottoms. Proc. R. Soc. Lond. Series A Math. Phys. Sci. 1946, 187, 1–18. [Google Scholar]
- Besio, G.; Blondeaux, P.; Frisina, P. A note on tidally generated sand waves. J. Fluid Mech. 2003, 485, 171–190. [Google Scholar] [CrossRef] [Green Version]
- Santen, R.B.V.; Swart, H.E.D.; Dijk, T.A.G.P.V. Sensitivity of tidal sand wavelength to environmental parameters: A combined data analysis and modelling approach. Cont. Shelf Res. 2011, 31, 966–978. [Google Scholar] [CrossRef]
- Borsje, B.W.; Roos, P.C.; Kranenburg, W.M.; Hulscher, S.J.M.H. Modeling tidal sand wave formation in a numerical shallow water model: The role of turbulence formulation. Cont. Shelf Res. 2013, 60, 17–27. [Google Scholar] [CrossRef]
- Venditti, J.G.; Church, M.; Bennett, S.J. Morphodynamics of small-scale superimposed sand waves over migrating dune bed forms. Water Resour. Res. 2005, 41, W10423–W10437. [Google Scholar] [CrossRef] [Green Version]
- Grasmeijer, B.; Kleinhans, M. Observed and predicted bed forms and their effect on suspended sand concentrations. Coastal Eng. 2004, 51, 351–371. [Google Scholar] [CrossRef]
- Li, Y.; Ma, L.-M.; Yang, J.-S.; Shi, A. Study on stability of sand waves by satellite sensing. In Proceedings of the First Asian and Pacific Coastal Engineering Conference, APACE2001, Dalian, China, 18–21 October 2001; pp. 850–856. [Google Scholar]
- Németh, A.A.; Hulscher, S.J.; de Vriend, H.J. Modelling sand wave migration in shallow shelf seas. Cont. Shelf Res. 2002, 22, 2795–2806. [Google Scholar] [CrossRef]
- Borsje, B.W.; Kranenburg, W.M.; Roos, P.C.; Matthieu, J.; Hulscher, S.J.M.H. The role of suspended load transport in the occurrence of tidal sand waves. J. Geophys. Res. Earth Surf. 2014, 119, 701–716. [Google Scholar] [CrossRef] [Green Version]
- Houthuys, R.; Trentesaux, A.; Wolf, P.D. Storm influences on a tidal sandbank’s surface (Middelkerke Bank, southern North Sea). Mar. Geol. 1994, 121, 23–41. [Google Scholar] [CrossRef]
- Minor Salvatierra, M.; Aliotta, S.; Susana Ginsberg, S. Morphology and dynamics of large subtidal dunes in Bahia Blanca estuary, Argentina. Geomorphology 2015, 246, 168–177. [Google Scholar] [CrossRef]
- Wei, S.; Wang, M.; Li, X.; Pichel, W.G. Ocean sand ridge signatures in the Bohai Sea observed by satellite ocean color and synthetic aperture radar measurements. Remote Sens. Environ. 2011, 115, 1926–1934. [Google Scholar]
- Durán, R.; Guillén, J. Continental Shelf Landforms. In Submarine Geomorphology; Springer: Cham, Switzerland, 2018; pp. 185–206. [Google Scholar]
- Guerrero Sánchez, Q. Bedforms and Associated Sediment Dynamics on the Inner Shelves at Different Spatio-Temporal Scales. Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2019. [Google Scholar]
- Williams, D.P.; Baralli, F.; Micheli, M.; Vasoli, S. Adaptive underwater sonar surveys in the presence of strong currents. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 2604–2611. [Google Scholar]
- Hagen, O.K.; Anonsen, K.B. Terrain referenced navigation using sand dunes and sand ripples in presence of tides. In Proceedings of the OCEANS 2018 MTS/IEEE Charleston, Charleston, SC, USA, 22–25 October 2018; pp. 1–6. [Google Scholar]
- Kennish, M.J.; Haag, S.M.; Sakowicz, G.P.; Tidd, R.A. Side-Scan Sonar Imaging of Subtidal Benthic Habitats in the Mullica River–Great Bay Estuarine System. J. Coast. Res. 2004, 45, 227–240. [Google Scholar] [CrossRef]
- Mhammdi, M.N.N.; Geawhari, M.A.G.M.A.; Trakadas, A.T.A.; Huff, L.H.L. AUV for Shallow Water Hydrographic Surveys: Detecting Bedforms in Oued Loukkos Estuary (Morocco); European Association of Geoscientists & Engineers: Houten, The Netherlands, 2013. [Google Scholar]
- Baba, T.; Matsumoto, H.; Kashiwase, K.; Hyakudome, T.; Kaneda, Y.; Sano, M. Micro-bathymetric Evidence for the Effect of Submarine Mass Movement on Tsunami Generation During the 2009 Suruga Bay Earthquake, Japan. In Submarine Mass Movements and Their Consequences. Advances in Natural and Technological Hazards Research; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Wang, X.; Jiao, J.; Yin, J.; Zhao, W.; Han, X.; Sun, B. Underwater sonar image classification using adaptive weights convolutional neural network. Appl. Acoust. 2019, 146, 145–154. [Google Scholar] [CrossRef]
- Einsidler, D.; Dhanak, M.; Beaujean, P.P. A Deep Learning Approach to Target Recognition in Side-Scan Sonar Imagery. In Proceedings of the OCEANS 2018 MTS/IEEE Charleston, Charleston, SC, USA, 22–25 October 2018; pp. 1–4. [Google Scholar]
- Wu, M.; Wang, Q.; Rigall, E.; Li, K.; Zhu, W.; He, B.; Yan, T. ECNet: Efficient convolutional networks for side scan sonar image segmentation. Sensors 2019, 19, 2009. [Google Scholar] [CrossRef] [Green Version]
- Sung, F.; Yang, Y.; Zhang, L.; Xiang, T.; Torr, P.H.S.; Hospedales, T.M. Learning to Compare: Relation Network for Few-Shot Learning. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Najafabadi, M.M.; Vilanustre, F.; Khoshgoftaar, T.T.; Seliya, N.; Wald, R.; Muharemagic, E. Deep learning applications and challenges in big data analytics. J. Big Data 2015, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.-W.; Lin, X. Big data deep learning: Challenges and perspectives. IEEE Access 2014, 2, 514–525. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhou, H.; Ding, X.; Rui, Z. Extreme Learning Machine for Regression and Multiclass Classification. IEEE Trans. Syst. Man Cybern. Part B 2012, 42, 513–529. [Google Scholar] [CrossRef] [Green Version]
- Liang, N.Y.; Huang, G.B.; Saratchandran, P.; Sundararajan, N. A Fast and Accurate Online Sequential Learning Algorithm for Feedforward Networks. IEEE Trans. Neural Netw. 2006, 17, 1411–1423. [Google Scholar] [CrossRef]
- Rong, H.J.; Huang, G.B.; Sundararajan, N.; Saratchandran, P. Online Sequential Fuzzy Extreme Learning Machine for Function Approximation and Classification Problems. IEEE Trans. Syst. Man Cybern. Part B 2009, 39, 1067–1072. [Google Scholar] [CrossRef]
- Sun, Y.; Yuan, Y.; Wang, G. An OS-ELM based distributed ensemble classification framework in P2P networks. Neurocomputing 2011, 74, 2438–2443. [Google Scholar] [CrossRef]
- Twichell, D.C. Bedform distribution and inferred sand transport on Georges Bank, United States Atlantic Continental Shelf. Sedimentology 1983, 30, 695–710. [Google Scholar] [CrossRef]
- Collins, M.B.; Shimwell, S.J.; Gao, S.; Powell, H.; Taylor, J.A. Water and sediment movement in the vicinity of linear sandbanks: The Norfolk Banks, southern North Sea. Mar. Geol. 1995, 123, 125–142. [Google Scholar] [CrossRef]
- Reynaud, J.v.; Tessier, B.; Proust, J.o.; Dalrymple, R.; Lericolais, G. Eustatic and hydrodynamic controls on the architecture of a deep shelf sand bank (Celtic Sea). Sedimentology 2010, 46, 703–721. [Google Scholar] [CrossRef]
- Hennings, I.; Lurin, B.; Vernemmen, C.; Vanhessche, U. On the behaviour of tidal current directions due to the presence of submarine sand waves. Mar. Geol. 2000, 169, 57–68. [Google Scholar] [CrossRef]
- van Dijk, T.A.G.P.; Lindenbergh, R.C.; Egberts, P.J.P. Separating bathymetric data representing multiscale rhythmic bed forms: A geostatistical and spectral method compared. J. Geophys. Res. 2008. [Google Scholar] [CrossRef]
- Venditti, J.G.; Church, M.; Bennett, S.J. On the transition between 2D and 3D dunes. Sedimentology 2005, 52, 1343–1359. [Google Scholar] [CrossRef]
- Wynn, R.B.; Masson, D.G.; Bett, B.J. Hydrodynamic significance of variable ripple morphology across deep-water barchan dunes in the Faroe–Shetland Channel. Mar. Geol. 2002, 192, 309–319. [Google Scholar] [CrossRef]
- Dijk, T.A.G.P.V.; Kleinhans, M.G. Processes controlling the dynamics of compound sand waves in the North Sea, Netherlands. J. Geophys. Res. Earth Surf. 2005, 110. [Google Scholar] [CrossRef]
- Passchier, S.; Kleinhans, M.G. Observations of sand waves, megaripples, and hummocks in the Dutch coastal area and their relation to currents and combined flow conditions. J. Geophys. Res. Earth Surf. 2005. [Google Scholar] [CrossRef]
- Crawford, A.; Skarke, A. Automatic detection of sand ripple features in sidescan sonar imagery. In Proceedings of the 2014 Oceans, St. John’s, NL, Canada, 14–19 September 2014; pp. 1–5. [Google Scholar]
- Bartlett, P.L. The sample complexity of pattern classification with neural networks. IEEE Trans. Inf. Theory 1998, 44, 525–536. [Google Scholar] [CrossRef] [Green Version]
- He, B.; Xu, D.; Nian, R.; van Heeswijk, M.; Yu, Q.; Miche, Y.; Lendasse, A. Fast Face Recognition Via Sparse Coding and Extreme Learning Machine. Cogn. Comput. 2014, 6, 264–277. [Google Scholar] [CrossRef] [Green Version]
- Han, C.H.; Zhang, J.M.; Liang, J.F.; Yin, R.G. Design and implementation of side-scan sonar data management system. Mar. Sci. Bull. 2011, 30, 188–193. [Google Scholar]
- Jianhu, Z.; Jun, Y.; Hongmei, Z.; Junxia, M. A New Radiometric Correction Method for Side-Scan Sonar Images in Consideration of Seabed Sediment Variation. Remote Sens. 2017, 9, 575. [Google Scholar]
- Jia, Y.; Li, G.; Dong, X.; He, K. A novel denoising method for vibration signal of hob spindle based on EEMD and grey theory. Measurement 2021, 169, 108490. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Mao, Q.; Fang, X.; Hu, Y.; Li, G. Chiller sensor fault detection based on empirical mode decomposition threshold denoising and principal component analysis. Appl. Therm. Eng. 2018, 144, 21–30. [Google Scholar] [CrossRef]
- Jin, T.; Li, Q.; Mohamed, M.A. A novel adaptive EEMD method for switchgear partial discharge signal denoising. IEEE Access 2019, 7, 58139–58147. [Google Scholar] [CrossRef]
- Huang, N.E. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Franzetti, M.; Roy, P.L.; Delacourt, C.; Garlan, T.; CancouëT, R.; Sukhovich, A.; Deschamps, A. Giant dune morphologies and dynamics in a deep continental shelf environment: Example of the banc du four (Western Brittany, France). Marine Geol. 2013, 346, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Flemming, B.W. Zur klassifikation subaquatischer, stromungstransversaler Transportkorper. Boch.geol.u.geothchn.arb 1988, 29, 44–47. [Google Scholar]
- Landeghem, K.J.J.V.; Wheeler, A.J.; Mitchell, N.C.; Sutton, G. Variations in sediment wave dimensions across the tidally dominated Irish Sea, NW Europe. Mar. Geol. 2009, 263, 108–119. [Google Scholar] [CrossRef]
- Landeghem, K.V.; Baas, J.H.; Mitchell, N.C.; Wilcockson, D.; Wheeler, A.J. Reversed sediment wave migration in the Irish Sea, NW Europe: A reappraisal of the validity of geometry-based predictive modelling and assumptions. Mar. Geol. 2012, 295–298, 95–112. [Google Scholar] [CrossRef]
- Bian, S.-H.; Xia, D.-X.; Chen, Y.; Zhao, Y.-X. The classification characteristics and developing factors of the sand waves at the mouth of Jiaozhou Bay. Period. Ocean Univ. China 2006, 36, 327–330. [Google Scholar]
- Zhao, Y.; Liu, B.; Li, X.; Wu, J.; Su, T. Topography Feature and Migration of Submarine Sand Waves in Jiaozhoy Bay Mouth. Oceanol. Limnol. Sin. 2006, 37, 464. [Google Scholar]
- Knaapen, M.A.F. Sandwave migration predictor based on shape information. J. Geophys. Res. Earth Surf. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Li, G.; Qiao, L.; Chen, X.; Shi, J.; Gao, F.; Wang, N.; Yue, S. Modeling the tidal dynamic changes induced by the bridge in Jiaozhou Bay, Qingdao, China. Cont. Shelf Res. 2014, 84, 43–53. [Google Scholar] [CrossRef]

























| Year | Name | Start and End Time | Duration | Ping Number |
|---|---|---|---|---|
| 2019 | Jiaozhou Bay 1 | 10:31:55–12:44:00 | 2:12:05 | 21868 |
| 2021 | Jiaozhou Bay 2 | 14:00:23–16:32:52 | 2:32:29 | 25181 |
| Jiaozhou Bay 1 | FNR (%) | FPR (%) | Accuracy (%) | F1-Score (%) | Training Time (s) | Testing Time (s) |
|---|---|---|---|---|---|---|
| MobileNet V3 | 4.93 | 6.37 | 94.69 | 94.07 | 9013.1247 | 0.0201 |
| Ours | 4.41 | 5.07 | 95.42 | 95.29 | 2.4765 | 0.0013 |
| Jiaozhou Bay 2 | FNR (%) | FPR (%) | Accuracy (%) | F1-Score (%) | Training Time (s) | Testing Time (s) |
|---|---|---|---|---|---|---|
| MobileNet V3 | 4.65 | 5.49 | 95.32 | 95.27 | 10802.6745 | 0.0247 |
| Ours | 4.28 | 4.73 | 95.67 | 95.38 | 3.2179 | 0.0021 |
| Jiaozhou Bay 1 & 2 | FNR (%) | FPR (%) | Accuracy (%) | F1-Score (%) | Training Time (s) | Testing Time (s) |
|---|---|---|---|---|---|---|
| MobileNet V3 | 4.73 | 6.25 | 94.87 | 94.47 | 18704.4657 | 0.0239 |
| Ours | 4.36 | 4.82 | 95.61 | 95.32 | 5.7168 | 0.0018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nian, R.; Zang, L.; Geng, X.; Yu, F.; Ren, S.; He, B.; Li, X. Towards Characterizing and Developing Formation and Migration Cues in Seafloor Sand Waves on Topology, Morphology, Evolution from High-Resolution Mapping via Side-Scan Sonar in Autonomous Underwater Vehicles. Sensors 2021, 21, 3283. https://doi.org/10.3390/s21093283
Nian R, Zang L, Geng X, Yu F, Ren S, He B, Li X. Towards Characterizing and Developing Formation and Migration Cues in Seafloor Sand Waves on Topology, Morphology, Evolution from High-Resolution Mapping via Side-Scan Sonar in Autonomous Underwater Vehicles. Sensors. 2021; 21(9):3283. https://doi.org/10.3390/s21093283
Chicago/Turabian StyleNian, Rui, Lina Zang, Xue Geng, Fei Yu, Shidong Ren, Bo He, and Xishuang Li. 2021. "Towards Characterizing and Developing Formation and Migration Cues in Seafloor Sand Waves on Topology, Morphology, Evolution from High-Resolution Mapping via Side-Scan Sonar in Autonomous Underwater Vehicles" Sensors 21, no. 9: 3283. https://doi.org/10.3390/s21093283
APA StyleNian, R., Zang, L., Geng, X., Yu, F., Ren, S., He, B., & Li, X. (2021). Towards Characterizing and Developing Formation and Migration Cues in Seafloor Sand Waves on Topology, Morphology, Evolution from High-Resolution Mapping via Side-Scan Sonar in Autonomous Underwater Vehicles. Sensors, 21(9), 3283. https://doi.org/10.3390/s21093283
