Thermionic Electron Beam Current and Accelerating Voltage Controller for Gas Ion Sources
Abstract
1. Introduction
2. Design
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bull, J.N.; Lee, J.W.L.; Vallance, C. Absolute Electron Total Ionization Cross-Sections: Molecular Analogues of DNA and RNA Nucleobase and Sugar Constituents. Phys. Chem. Chem. Phys. 2014, 16, 10743–10752. [Google Scholar] [CrossRef]
- Märk, T.D.; Dunn, G.H. (Eds.) Electron Impact Ionization; Springer: Wien, Austria, 1985; ISBN 978-3-7091-4030-7. [Google Scholar]
- Zawadzki, M. Electron-Impact Ionization Cross Section of Formic Acid. Eur. Phys. J. D 2018, 72, 12. [Google Scholar] [CrossRef]
- Elkatmis, A.; Kangi, R. Remarks Concerning about the Characteristics of the Extractor Vacuum Gauge and the Quadrupole Mass Spectrometer. Measurement 2019, 131, 269–276. [Google Scholar] [CrossRef]
- Jousten, K.; Boineau, F.; Bundaleski, N.; Illgen, C.; Setina, J.; Teodoro, O.M.N.D.; Vicar, M.; Wüest, M. A Review on Hot Cathode Ionisation Gauges with Focus on a Suitable Design for Measurement Accuracy and Stability. Vacuum 2020, 179, 109545. [Google Scholar] [CrossRef]
- Tassetti, C.-M.; Mahieu, R.; Danel, J.-S.; Peyssonneaux, O.; Progent, F.; Polizzi, J.-P.; Machuron-Mandard, X.; Duraffourg, L. MEMS Electron Impact Ion Source Integrated in a Microtime-of-Flight Mass Spectrometer. Sens. Actuators B Chem. 2013, 189, 173–178. [Google Scholar] [CrossRef]
- Syms, R.R.A.; Wright, S. MEMS Mass Spectrometers: The next Wave of Miniaturization. J. Micromech. Microeng. 2016, 26, 023001. [Google Scholar] [CrossRef]
- Alessi, J.G.; Barton, D.; Beebe, E.; Bellavia, S.; Gould, O.; Kponou, A.; Lambiase, R.; Lockey, R.; McNerney, A.; Mapes, M.; et al. The Brookhaven National Laboratory Electron Beam Ion Source for RHIC. Rev. Sci. Instrum. 2010, 81, 02A509. [Google Scholar] [CrossRef]
- Durakiewicz, T.; Sikora, J.; Halas, S. Work Function Variations of Incandescent Filaments during Self-Cooling in Vacuum. Vacuum 2006, 80, 894–898. [Google Scholar] [CrossRef]
- Mroczka, J. The Cognitive Process in Metrology. Measurement 2013, 46, 2896–2907. [Google Scholar] [CrossRef]
- Yinon, J.; Ganz, M. Trap Current Regulated Ion Source Power Supply for a Mass Spectrometer. Rev. Sci. Instrum. 1975, 46, 1707–1708. [Google Scholar] [CrossRef]
- Chapman, R. Versatile Wide Range Electron Current Regulator. Rev. Sci. Instrum. 1972, 43, 1536–1538. [Google Scholar] [CrossRef]
- Close, K.; Yarwood, J. A Precision Electron Emission Regulator. Vacuum 1972, 22, 45–46. [Google Scholar] [CrossRef]
- Shaw, S.-Y.; Lue, J.T. An Integrated Circuit Based Vacuum Ionisation Gauge Meter. J. Phys. E Sci. Instrum. 1980, 13, 1150–1153. [Google Scholar] [CrossRef]
- Watanabe, F.; Hiramatsu, S.; Ishimaru, H. A Modulated-Emission Pressure Gauge System. Vacuum 1984, 34, 673–674. [Google Scholar] [CrossRef]
- Halas, S.; Sikora, J. Electron Emission Stabiliser with Double Negative Feedback Loop. Meas. Sci. Technol. 1990, 1, 980–982. [Google Scholar] [CrossRef]
- Donkov, N.; Knapp, W. Control of Hot-Filament Ionization Gauge Emission Current: Mathematical Model and Model-Based Controller. Meas. Sci. Technol. 1997, 8, 798–803. [Google Scholar] [CrossRef]
- Sikora, J. Method of Enhancing the Repeatability of Mass Spectrometer Measurement Results. Metrol. Meas. Syst. 2003, 10, 101–116. [Google Scholar]
- Sikora, J. Dual Application of a Biasing System to an Electron Source with a Hot Cathode. Meas. Sci. Technol. 2003, 15, N10–N14. [Google Scholar] [CrossRef]
- Flaxer, E. Programmable Smart Electron Emission Controller for Hot Filament. Rev. Sci. Instrum. 2011, 82, 025111. [Google Scholar] [CrossRef] [PubMed]
- Kania, B.; Sikora, J. Thermionic emission controller with PID algorithm. In 2016 MIXDES, Proceedings of the 23rd International Conference “Mixed Design of Integrated Circuits and Systems”, Łódź, Poland, 23–15 June 2016; Napieralski, A., Ed.; Lodz University of Technology: Łódź, Poland, 2016; pp. 480–483. ISBN 978-1-5090-3099-6. [Google Scholar]
- Durakiewicz, T. Electron Emission Controller with Pulsed Heating of Filament. Int. J. Mass Spectrom. Ion. Process. 1996, 156, 31–40. [Google Scholar] [CrossRef]
- Herbert, B. A Circuit for Stabilizing the Electron Current to the Anode of a Hot-Filament Device. Vacuum 1976, 26, 363–369. [Google Scholar] [CrossRef]
- Hansen, D.C. Ionization Pressure Gauge with Bias Voltage and Emission Current Control and Measurement. U.S. Patent 9927317, 27 March 2018. [Google Scholar]
- Sikora, J.; Halas, S. A Novel Circuit for Independent Control of Electron Energy and Emission Current of a Hot Cathode Electron Source. Rapid Commun. Mass Spectrom. 2011, 25, 689–692. [Google Scholar] [CrossRef] [PubMed]
- Kania, B.; Sikora, J. System Identification of a Hot Cathode Electron Source: Time Domain Approach. AIP Adv. 2018, 8, 105107. [Google Scholar] [CrossRef]
- Shida, J.; Wu, F.; Spieglan, E.; Çalışkan, M. Tungsten Thermionic Emission as a Gauge for Low Pressures of Cesium Vapor. Instruments 2020, 4, 34. [Google Scholar] [CrossRef]
Presented Control System | Previous Control System [21] | |
---|---|---|
Controller hardware platform | PC | µC |
Programming language | G (LabVIEW) | C |
Control of emission current | Yes | Yes |
Control algorithm | PID, gain scheduling | PID, gain scheduling |
Feedback signal transferring from the controlled to the control circuit | Instrumentation amplifier | Current mirror |
Average relative standard deviation of emission current | 0.021% | 0.015% |
Control of electron accelerating voltage | Yes | No |
Maximum percentage change in electron accelerating voltage | 0.011% | Estimated 2.360% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikora, J.; Kania, B.; Mroczka, J. Thermionic Electron Beam Current and Accelerating Voltage Controller for Gas Ion Sources. Sensors 2021, 21, 2878. https://doi.org/10.3390/s21082878
Sikora J, Kania B, Mroczka J. Thermionic Electron Beam Current and Accelerating Voltage Controller for Gas Ion Sources. Sensors. 2021; 21(8):2878. https://doi.org/10.3390/s21082878
Chicago/Turabian StyleSikora, Jarosław, Bartosz Kania, and Janusz Mroczka. 2021. "Thermionic Electron Beam Current and Accelerating Voltage Controller for Gas Ion Sources" Sensors 21, no. 8: 2878. https://doi.org/10.3390/s21082878
APA StyleSikora, J., Kania, B., & Mroczka, J. (2021). Thermionic Electron Beam Current and Accelerating Voltage Controller for Gas Ion Sources. Sensors, 21(8), 2878. https://doi.org/10.3390/s21082878