Elastic Wave Monitoring of Cementitious Mixtures Including Internal Curing Mechanisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mixture Design
2.2. Test Methods
2.2.1. Acoustic Emission
2.2.2. Ultrasound
3. Results and Discussion
3.1. Acoustic Emission Monitoring of Cement Pastes
3.2. Acoustic Emission Monitoring of Cementitious Mortars
3.3. Ultrasound
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jensen, O.; Hansen, P. Water-entrained cement-based materials: I. Principles and theoretical background. Cem. Concr. Res. 2001, 31, 647–654. [Google Scholar] [CrossRef]
- Bentur, A.; Igarashi, S.; Kovler, K. Prevention of autogenous shrinkage in high-strength concrete by internal curing using wet ligthweight aggregates. Cem. Concr. Res. 2001, 31, 1587–1591. [Google Scholar] [CrossRef]
- Geiker, M.; Bentz, D.; Jensen, O. Mitigating Autogenous Shrinkage by Internal Curing; ACI Special Publications: Farmington Hills, MI, USA, 2004; pp. 143–154. [Google Scholar]
- Bentz, D.; Lura, P.; Roberts, J. Mixture proportioning for internal curing. Concr. Int. 2005, 27, 35–40. [Google Scholar]
- Jensen, O.; Hansen, P. Autogenous deformation and RH-change in perspective. Cem. Concr. Res. 2001, 31, 1859–1865. [Google Scholar] [CrossRef]
- Lura, P.; Jensen, M.; van Breugel, K. Autogenous shrinkage in high-performance cement paste: An evaluation of basic mechanisms. Cem. Concr. Res. 2003, 33, 223–232. [Google Scholar] [CrossRef]
- Cusson, D.; Hoogeveen, T. Internal curing of high-performance concrete with pre-soaked fine lightweight aggregate for prevention of autogenous shrinkage cracking. Cem. Concr. Res. 2008, 38, 757–765. [Google Scholar] [CrossRef] [Green Version]
- Kohno, K.; Okamoto, T.; Isikawa, Y.; Sibata, T.; Mori, H. Effects of artificial lightweight aggregate on autogenous shrinkage of concrete. Cem. Concr. Res. 1999, 29, 611–614. [Google Scholar] [CrossRef]
- Zhutovsky, S.; Kovler, K.; Bentur, A. Efficiency of lightweight aggregates for internal curing of high strength concrete to eliminate autogenous shrinkage. Mater. Struct. 2002, 35, 97–101. [Google Scholar] [CrossRef]
- Liu, J.; Shi, C.; Ma, X.; Khayat, K.; Zhang, J.; Wang, D. An overview on the effect of internal curing on shrinkage of high performance cement-based materials. Constr. Build. Mater. 2017, 146, 702–712. [Google Scholar] [CrossRef] [Green Version]
- Kevern, J.; Nowasell, Q. Internal curing of pervious concrete using lightweight aggregates. Constr. Build. Mater. 2018, 161, 229–235. [Google Scholar] [CrossRef]
- Mechtcherine, V.; Wyrzywkowski, M.; Schröfl, C.; Snoeck, D.; Lura, P.; de Belie, N.; Mignon, A.; van Vlierberghe, S.; Klemm, A.; Almeida, F.; et al. RILEM TC 260-RSC: Application of Super Absorbent Polymers (SAP) in Concrete Construction—Update of RILEM STAR. Mater. Struct. 2021, 54, 80. [Google Scholar] [CrossRef]
- Schröfl, C.; Mechtcherine, V.; Gorges, M. Relation between the molecular structure and the efficiency of superabsorbent polymers (SAP) as concrete admixture to mitigate autogenous shrinkage. Cem. Concr. Res. 2012, 42, 865–873. [Google Scholar] [CrossRef]
- Snoeck, D.; Jensen, O.; de Belie, N. The influence of superabsorbent polymers on the autogenous shrinkage properties of cement pastes with supplementary cementitious materials. Cem. Concr. Res. 2015, 74, 59–67. [Google Scholar] [CrossRef]
- Mignon, A.; Snoeck, D.; Dubruel, P.; van Vlierberghe, S.; de Belie, N. Crack Mitigation in Concrete: Superabsorbent Polymers as Key to Success? J. Mater. 2017, 10, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefever, G.; Tsangouri, E.; Snoeck, D.; Aggelis, D.; de Belie, N.; van Vlierberghe, S.; van Hemelrijck, D. Combined use of superabsorbent polymers and nanosilica for reduction of restrained shrinkage and strength compensation in cementitious mortars. Constr. Build. Mater. 2020, 251, 118966. [Google Scholar] [CrossRef]
- Schröfl, C.; Mechtcherine, V.; Vontobel, P.; Hovind, J.; Lehmann, E. Sorption kinetics of superabsorbent polymers (SAPs) in fresh Portland cement-based pastes visualized and quantified by neutron radiography and correlated to the progress of cement hydration. Cem. Concr. Res. 2015, 75, 1–13. [Google Scholar] [CrossRef]
- Nestle, N.; Kühn, A.; Friedemann, K.; Horch, C.; Stallmach, F.; Herth, G. Water balance and pore structure development in cementitious materials in internal curing with modified superabsorbent polymer studied by NMR. Microporous Mesoporous Mater. 2009, 125, 51–57. [Google Scholar] [CrossRef]
- Snoeck, D.; Pel, L.; de Belie, N. The water kinetics of superabsorbent polymers during cement hydration and internal curing visualized and studied by NMR. Sci. Rep. 2017, 7, 9514. [Google Scholar] [CrossRef]
- Lefever, G.; Snoeck, D.; de Belie, N.; van Vlierberghe, S.; van Hemelrijck, D.; Aggelis, D. The contribution of elastic wave NDT to the characterization of modern cementitious media. Sensors 2020, 20, 2959. [Google Scholar] [CrossRef]
- Dzaye, E.; de Schutter, G.; Aggelis, D. Monitoring early-age acoustic emission of cement paste and fly ash paste. Cem. Concr. Res. 2020, 129, 105964. [Google Scholar] [CrossRef] [Green Version]
- Chotard, T.; Barthelemy, J.; Smith, A.; Gimet-Breart, N.; Huger, M.; Fargeot, D.; Gault, C. Acoustic emission monitoring of calcium aluminate cement setting at the early age. J. Mater. Sci. Lett. 2001, 20, 667–669. [Google Scholar] [CrossRef]
- Topolar, L.; Pazdera, L.; Kucharczykova, B.; Smutny, J.; Mikulasek, K. Using Acoustic Emission Methods to Monitor Cement Composites during Setting and Hardening. Appl. Sci. 2017, 7, 451. [Google Scholar] [CrossRef]
- Ohno, K.; Ohtsu, M. Crack classification in concrete based on acoustic emission. Constr. Build. Mater. 2010, 24, 2339–2346. [Google Scholar] [CrossRef]
- Aggelis, D.; Mpalaskas, A.; Matikas, T. Investigation of different fracture modes in cement-based materials by acoustic emission. Cem. Concr. Res. 2013, 48, 1–8. [Google Scholar] [CrossRef]
- Lefever, G.; Snoeck, D.; Aggelis, D.; de Belie, N.; van Vlierberghe, S.; van Hemelrijck, D. Evaluation of the self-healing ability of mortar mixtures containing superabsorbent polymers and nanosilica. Materials 2020, 13, 380. [Google Scholar] [CrossRef] [Green Version]
- ASTM International. ASTM Standard C 349-18: Standard Test Method for Compressive Strength of Hydraulic-Cement Mortars (Using Portions of Prisms Broken in Flexure); ASTM International: West Conshohocken, PA, USA, 2018. [Google Scholar]
- Reinhardt, H.-W. Recommendation of RILEM TC 218-SFC: Sonic methods for quality control of fresh cementitious materials. Mater. Struct. 2011, 44, 1047–1062. [Google Scholar]
- Reinhardt, H.-W.; Grosse, C. Continuous monitoring of setting and hardening of mortar and concrete. Constr. Build. Mater. 2004, 18, 145–154. [Google Scholar] [CrossRef]
- Reinhardt, H.-W.; Grosse, C.; Herb, A. Ultrasonic monitoring of setting and hardening of cement mortar—A new device. Mater. Struct. 2000, 33, 580–583. [Google Scholar] [CrossRef]
- Lefever, G.; Aggelis, D.; de Belie, N.; Raes, M.; Hauffman, T.; van Hemelrijck, D.; Snoeck, D. The influence of superabsorbent polymers and nanosilica on the hydration process and microstructure of cementitious mixtures. Materials 2020, 13, 5194. [Google Scholar] [CrossRef]
Mixture | Cement | Water | Superplasticizer | SAPs | LWAs | Sand |
---|---|---|---|---|---|---|
Reference | 580 | 203 | 2.32 | - | - | 1160 |
SAP | 580 | 233.16 | 2.32 | 1.16 | - | 1160 |
LWA | 580 | 233.16 | 2.32 | - | 30.16 | 1160 |
Density (g/cm³) | Compressive Strength (MPa) | |
---|---|---|
Reference | 2.17 ± 0.01 | 77.3 ± 1.3 |
SAP | 2.16 ± 0.04 | 72.4 ± 2.8 |
LWA | 2.11 ± 0.01 | 61.6 ± 5.7 |
Initial Weight (g) | Weight after Saturation (g) | Water Uptake (g) | |
---|---|---|---|
Reference | 517.33 | 530.90 | 13.57 |
SAP | 512.55 | 525.02 | 12.47 |
LWA | 478.24 | 497.02 | 18.78 |
Initial Setting Time (h) | Final Setting Time (h) | |
---|---|---|
Reference | 3.38 ± 0.16 | 7.64 ± 0.38 |
SAP | 4.02 ± 0.30 | 7.44 ± 0.10 |
LWA | 3.60 ± 0.35 | 7.21 ± 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lefever, G.; Snoeck, D.; De Belie, N.; Van Hemelrijck, D.; Aggelis, D.G. Elastic Wave Monitoring of Cementitious Mixtures Including Internal Curing Mechanisms. Sensors 2021, 21, 2463. https://doi.org/10.3390/s21072463
Lefever G, Snoeck D, De Belie N, Van Hemelrijck D, Aggelis DG. Elastic Wave Monitoring of Cementitious Mixtures Including Internal Curing Mechanisms. Sensors. 2021; 21(7):2463. https://doi.org/10.3390/s21072463
Chicago/Turabian StyleLefever, Gerlinde, Didier Snoeck, Nele De Belie, Danny Van Hemelrijck, and Dimitrios G. Aggelis. 2021. "Elastic Wave Monitoring of Cementitious Mixtures Including Internal Curing Mechanisms" Sensors 21, no. 7: 2463. https://doi.org/10.3390/s21072463
APA StyleLefever, G., Snoeck, D., De Belie, N., Van Hemelrijck, D., & Aggelis, D. G. (2021). Elastic Wave Monitoring of Cementitious Mixtures Including Internal Curing Mechanisms. Sensors, 21(7), 2463. https://doi.org/10.3390/s21072463