The Scent of Antifungal Propolis
Abstract
1. Introduction
2. Materials and Methods
2.1. Origin of Raw Propolis and Preparation of Ethanol Extracts
2.2. Antifungal Susceptibility Testing of C. albicans
2.3. GC-MS Analysis of the Propolis Extracts
2.4. Classification of Propolis Extracts Using an Electronic Nose
2.5. Statistics
3. Results
3.1. Antifungal Susceptibility
3.2. GC-MS Analysis
3.3. Electronic Nose
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghisalberti, E.L. Propolis: A review. Bee World 1979, 60, 59–84. [Google Scholar] [CrossRef]
- Burdock, G.A. Review of the biological properties and toxicity of bee propolis (propolis). Food Chem. Toxicol. 1998, 36, 347–363. [Google Scholar] [CrossRef]
- Banskota, A.H.; Tezuka, Y.; Kadota, S. Recent progress in pharmacological research of propolis. Phytother. Res. 2001, 15, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Kujumgiev, A.; Tsvetkova, I.; Serkedjieva, Y.; Bankova, V.; Christov, R.; Popov, S. Antibacterial; antifungal and antiviral activity of propolis of different geographic origin. J. Ethnopharmacol. 1999, 64, 235–240. [Google Scholar] [CrossRef]
- Uzel, A.; Önçağ, Ö.; Çoğulu, D.; Gençay, Ö. Chemical compositions and antimicrobial activities of four different Anatolian propolis samples. Microbiol. Res. 2005, 160, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Alfarrayeh, I.; Fekete, C.; Gazdag, Z.; Papp, G. Propolis ethanolic extract has double-face in vitro effect on the planktonic growth and biofilm formation of some commercial probiotics. Saudi J. Biol. Sci. 2021, 28, 1033–1039. [Google Scholar] [CrossRef] [PubMed]
- Koo, H.; Gomes, B.P.F.A.; Rosalen, P.L.; Ambrosano, G.M.B.; Park, Y.K.; Cury, J.A. In vitro antimicrobial activity of propolis and Arnica montana against oral pathigens. Arch. Oral Biol. 2000, 45, 141–148. [Google Scholar] [CrossRef]
- Marcucci, M.C. Propolis: Chemical composition; biological properties and therapeutic activity. Apidologie 1995, 26, 83–99. Available online: https://hal.archives-ouvertes.fr/hal-00891249 (accessed on 1 March 2021). [CrossRef]
- Corrêa, J.L.; Veiga, F.F.; Jarros, I.C.; Costa, M.I.; Castilho, P.F.; de Oliveira, K.M.P.; Rosseto, H.C.; Bruschi, M.L.; Svidzinski, T.I.; Negri, M. Propolis extract has bioactivity on the wall and cell membrane of Candida albicans. J. Ethnopharmacol. 2020, 256, 112791. [Google Scholar] [CrossRef]
- Quiroga, E.N.; Sampietro, D.A.; Soberón, J.R.; Sgariglia, M.A.; Vattuone, M.A. Propolis from the northwest of Argentina as a source of antifungal principles. J. Appl. Microbiol. 2006, 101, 103–110. [Google Scholar] [CrossRef]
- Bankova, V.S.; Solange, L.D.C.; Marcucci, M.C. Propolis: Recent advances in chemistry and plant origin. Apidologie 2000, 31, 3–15. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Álvarez, J.A. Functional properties of honey; propolis and royal jelly. J. Food Sci. 2008, 73, 117–124. [Google Scholar] [CrossRef]
- Cox, R.E.; Yamamoto, S.; Otto, A.; Simoneit, B.R.T. Oxygenated di- and tricyclic diterpenoids of southernhemisphere conifers. Biochem. Syst. Ecol. 2007, 35, 342–362. [Google Scholar] [CrossRef]
- Kartal, M.; Kaya, S.; Kurucu, S. GC-MS analysis of propolis samples from two different regions of Turkey. Z. Naturforsch. C 2002, 57, 905–909. [Google Scholar] [CrossRef] [PubMed]
- Rushdi, A.I.; Adgaba, N.; Bayaqoob, N.I.; Al-Khazim, A.; Simoneit, B.I.; El-Mubarak, A.H.; Al-Mutlaq, K.F. Characteristics and chemical compositions of propolis from Ethiopia. Springerplus 2014, 3, 253. [Google Scholar] [CrossRef]
- Fournel, A.; Mantel, M.; Pinger, M.; Manesse, C.; Dubreuil, R.; Herrier, C.; Rousselle, T.; Livache, T.; Bensafi, M. An experimental investigation comparing a surface plasmon resonance imaging-based artificial nose with natural olfaction. Sens. Actuat. B Chem. 2020, 320, 128342. [Google Scholar] [CrossRef]
- Li, Z.; Askim, J.R.; Suslick, K.S. The Optoelectronic nose: Colorimetric and fluorometric sensor arrays. Chem. Rev. 2019, 119, 231–292. [Google Scholar] [CrossRef]
- Alencar, S.M.; Oldoni, T.L.C.; Castro, M.L.; Cabral, I.S.R.; Costa-Neto, C.M.; Cury, J.A.; Rosalen, P.L.; Ikegaki, M. Chemical composition and biological activity of a new type of Brazilian propolis: Red propolis. J. Ethnopharmacol. 2007, 113, 278–283. [Google Scholar] [CrossRef]
- Torres-Rodríguez, J.M.; Alvarado-Ramírez, E. In vitro susceptibilities to yeasts using the ATB® FUNGUS 2 method, compared with Sensititre Yeast One® and standard CLSI (NCCLS) M27-A2 methods. J. Antimicrob. Chemother. 2007, 60, 658–661. [Google Scholar] [CrossRef][Green Version]
- Boisard, S.; Le Ray, A.-M.; Landreau, A.; Kempf, M.; Cassisa, V.; Flurin, C.; Richomme, P. Antifungal and antibacterial metabolites from a french poplar type propolis. Evid Based Compl. Altern. 2015, 2015, 319240. [Google Scholar] [CrossRef]
- Brenet, S.; John-Herpin, A.; Gallat, F.X.; Musnier, B.; Buhot, A.; Herrier, C.; Rousselle, T.; Livache, T.; Hou, Y. Highly-selective optoelectronic nose based on surface plasmon resonance imaging for sensing volatile organic compounds. Anal. Chem. 2018, 90, 9879–9887. [Google Scholar] [CrossRef] [PubMed]
- Petruzzi, L.; Rosaria Corbo, M.; Campaniello, D.; Speranza, B.; Sinigaglia, M.; Bevilacqua, A. Antifungal and antibacterial effect of propolis: A comparative hit for food-borne Pseudomonas; Enterobacteriaceae and fungi. Foods 2020, 9, 559. [Google Scholar] [CrossRef]
- Agüero, M.B.; Svetaz, L.; Baroni, V.; Lima, B.; Luna, L.; Zacchino, S.; Saavedra, P.; Wunderlin, D.; Feresin, G.E.; Tapia, A. Urban propolis from San Juan province (Argentina): Ethnopharmacological uses and antifungal activity against Candida and dermatophytes. Ind. Crops Prod. 2014, 57, 166–173. [Google Scholar] [CrossRef]
- Sova, M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini-Rev. Med. Chem. 2012, 12, 749–767. [Google Scholar] [CrossRef]
- Cui, S.; Hassan, R.Y.; Heintz-Buschart, A.; Bilitewski, U. Regulation of Candida albicans interaction with macrophages through the activation of HOG pathway by genistein. Molecules 2016, 21, 162. [Google Scholar] [CrossRef]
- Dias Silva, M.J.; Simonet, A.M.; Silva, N.C.; Dias, A.L.; Vilegas, W.; Macías, F.A. Bioassay-guided isolation of fungistatic compounds from Mimosa caesalpiniifolia leaves. J. Nat. Prod. 2019, 82, 1496–1502. [Google Scholar] [CrossRef]
- Ramage, G.; Saville, S.P.; Wickes, B.L.; López-Ribot, J.L. Inhibition of Candida albicans biofilm formation by farnesol; a quorum-sensing molecule. Appl. Environ. Microb. 2002, 68, 5459–5463. [Google Scholar] [CrossRef]
- Boonchird, C.; Flegel, T.W. In vitro antifungal activity of eugenol and vanillin against Candida albicans and Cryptococcus neoformans. Can. J. Microbiol. 1982, 28, 1235–1241. [Google Scholar] [CrossRef] [PubMed]
- Shreaz, S.; Bhatia, R.; Khan, N.; Muralidhar, S.; Manzoor, N.; Khan, L.A. Influences of cinnamic aldehydes on H+ extrusion activity and ultrastructure of Candida. J. Med. Microbiol. 2013, 62, 232–240. [Google Scholar] [CrossRef]
- Perez-Castillo, Y.; Lima, T.C.; Ferreira, A.R.; Silva, C.R.; Campos, R.S.; Neto, J.; Magalhães, H.I.; Cavalcanti, B.C.; Júnior, H.V.; de Sousa, D.P. Bioactivity and molecular docking studies of derivatives from cinnamic and benzoic acids. BioMed Res. Int. 2020, 2020, 6345429. [Google Scholar] [CrossRef]
- Cheng, H.; Qin, Z.H.; Guo, X.F.; Hu, X.S.; Wu, J.H. Geographical origin identification of propolis using GC–MS and electronic nose combined with principal component analysis. Food Res. Int. 2013, 51, 813–822. [Google Scholar] [CrossRef]
EEP (µg/mL) | SO | SZ | HE | CS |
---|---|---|---|---|
IC50 | No | 72 | 134 | 108 |
MIC80 | No | 100 | 200 | 200 |
Component | >5-Times Higher Concentration in Antifungal Samples [Times] |
---|---|
11,14-Eicosadienoic acid | 16.84 |
Ferulic acid | 14.87 |
Benzene propanoic acid | 13.13 |
Farnesol | 12.99 |
Cinnamic acid | 12.97 |
Urea | 12.16 |
Benzoic acid | 11.66 |
17-Octadecynoic acid | 10.96 |
alpha/beta-Eudesmol | 10.90 |
Vanillin | 9.97 |
Ricinoleic acid | 8.88 |
4-Methoxycinnamic acid | 8.64 |
cis/trans p-Coumaric acid | 8.60 |
Benzyl alcohol | 8.21 |
cis/trans p-Coumaric acid | 8.10 |
Hexadecyl-p-coumarate | 7.30 |
1,3,5-Benzetriol | 7.03 |
Coniferyl aldehyde | 7.02 |
Isoferulic acid | 6.89 |
Pyridoxine | 6.79 |
Methyl ferulate | 6.55 |
Propanoic acid | 6.19 |
alpha/beta-Eudesmol | 5.67 |
Methyl 2-amino-3-hydroxybenzoate | 5.46 |
Caffeic acid | 5.07 |
Caffeic acid, ethyl ester | 5.06 |
Classification Results a, c | ||||||
---|---|---|---|---|---|---|
Predicted Group Membership | ||||||
Group | Control | Non-Antifungal | Antifungal | Total | ||
Original | Count | Control | 13 | 1 | 0 | 14 |
Non-antifungal | 0 | 7 | 0 | 7 | ||
Antifungal | 0 | 0 | 42 | 42 | ||
% | Control | 92.9 | 7.1 | 0 | 100.0 | |
Non-antifungal | 0 | 100.0 | 0 | 100.0 | ||
Antifungal | 0 | 0 | 100.0 | 100.0 | ||
Cross-validated b | Count | Control | 12 | 2 | 0 | 14 |
Non-antifungal | 0 | 7 | 0 | 7 | ||
Antifungal | 0 | 1 | 41 | 42 | ||
% | Control | 85.7 | 14.3 | 0 | 100.0 | |
Non-antifungal | 0 | 100.0 | 0 | 100.0 | ||
Antifungal | 0 | 2.4 | 97.6 | 100.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papp, Z.; Bouchelaghem, S.; Szekeres, A.; Meszéna, R.; Gyöngyi, Z.; Papp, G. The Scent of Antifungal Propolis. Sensors 2021, 21, 2334. https://doi.org/10.3390/s21072334
Papp Z, Bouchelaghem S, Szekeres A, Meszéna R, Gyöngyi Z, Papp G. The Scent of Antifungal Propolis. Sensors. 2021; 21(7):2334. https://doi.org/10.3390/s21072334
Chicago/Turabian StylePapp, Zsigmond, Sarra Bouchelaghem, András Szekeres, Réka Meszéna, Zoltán Gyöngyi, and Gábor Papp. 2021. "The Scent of Antifungal Propolis" Sensors 21, no. 7: 2334. https://doi.org/10.3390/s21072334
APA StylePapp, Z., Bouchelaghem, S., Szekeres, A., Meszéna, R., Gyöngyi, Z., & Papp, G. (2021). The Scent of Antifungal Propolis. Sensors, 21(7), 2334. https://doi.org/10.3390/s21072334