Determination of the Influence of Mechanical Properties of Capsules and Seeds on the Susceptibility to Feeding of Mononychus pubctumalbum in Endangered Plant Species Iris aphylla L. and Iris sibirica L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Morphological Traits of Seed Capsules and Seeds
2.3. Puncture Tests
2.4. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of Seed Capsules and Seeds
3.2. Puncture Tests Results
3.3. Principal Component Analysis of Characteristic Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Golimowski, W.; Marcinkowski, D.; Gracz, W.; Konieczny, R.; Poczta, O.; Czechlowski, M.; Krzaczek, P.; Piekarski, W. Determination of methyl palmitate content in fatty acid methyl esters by near infrared spectroscopy. Przem. Chem. 2017, 96, 2522–2526. [Google Scholar]
- Piasecka, A.; Cieśla, J.; Koczańska, M.; Krzemińska, I. Effectiveness of Parachlorella kessleri cell disruption evaluated with the use of laser light scattering methods. J. Appl. Phycol. 2019, 31, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Gancarz, M.; Malaga-Toboła, U.; Oniszczuk, A.; Tabor, S.; Oniszczuk, T.; Gawrysiak-Witulska, M.; Rusinek, R. Detection and measurement of aroma compounds with the electronic nose and a novel method for MOS sensor signal analysis during the wheat bread making process. Food Bioprod. Process. 2021. [Google Scholar] [CrossRef]
- Zdunek, A.; Gancarz, M.; Cybulska, J.; Ranachowski, Z.; Zgórska, K. Turgor and temperature effect on fracture of potato tuber (Solanum tuberosum cv. Irga). Int. Agrophysics 2008, 22, 89–97. [Google Scholar]
- Garbacz, M.; Malec, A.; Duda-Saternus, S.; Suchorab, Z.; Guz, L.; Łagód, G. Methods for early detection of microbiological infestation of buildings based on gas sensor Technologies. Chemosensors 2020, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Marek, G.; Dobrzański, B., Jr.; Oniszczuk, T.; Combrzyński, M.; Ćwikła, D.; Rusinek, R. Detection and Differentiation of Volatile Compound Profiles in Roasted Coffee Arabica Beans from Different Countries Using an Electronic Nose and GC-MS. Sensors 2020, 20, 2124. [Google Scholar] [CrossRef]
- Rusinek, R.; Kmiecik, D.; Gawrysiak-Witulska, M.; Malaga-Toboła, U.; Tabor, S.; Findura, P.; Siger, A.; Gancarz, M. Identification of the Olfactory Profile of Rapeseed Oil as a Function of Heating Time and Ratio of Volume and Surface Area of Contact with Oxygen Using an Electronic Nose. Sensors 2021, 21, 303. [Google Scholar] [CrossRef] [PubMed]
- Stropek, Z.; Gołacki, K. Viscoelastic response of apple flesh in a wide range of mechanical loading rates. Int. Agrophysics 2018, 32, 335–340. [Google Scholar] [CrossRef]
- Stasiak, M.; Molenda, M.; Bańda, M.; Horabik, J.; Wiacek, J.; Parafiniuk, P.; Wajs, J.; Gancarz, M.; Gondek, E.; Lisowski, A.; et al. Friction and shear properties of pine biomass and pellets. Materials 2020, 13, 3567. [Google Scholar] [CrossRef]
- Rusinek, R.; Gancarz, M.; Nawrocka, A. Application of an electronic nose with novel method for generation of smellprints for testing the suitability for consumption of wheat bread during 4-day storage. LWT 2020, 117, 108665. [Google Scholar] [CrossRef]
- Gupta, N.; Khosravy, M.; Patel, N.; Dey, N.; Gupta, S.; Darbari, H.; González Crespo, R. Economic data analytic AI technique on IoT edge devices for health monitoring of agriculture machines. Appl. Intell. 2020, 50, 3990–4016. [Google Scholar] [CrossRef]
- Gupta, N.; Gupta, S.; Khosravy, M.; Dey, N.; Joshi, N.; González Crespo, R.; Patel, N. Economic IoT strategy: The future technology for health monitoring and diagnostic of agriculture vehicles. J. Intell. Manuf. 2020. [Google Scholar] [CrossRef]
- Gupta, N.; Khosravy, M.; Gupta, S.; Dey, N.; González Crespo, R. Lightweight Artificial Intelligence Technology for Health Diagnosis of Agriculture Vehicles: Parallel Evolving Artificial Neural Networks by Genetic Algorithm. Int. J. Parallel. Prog. 2020. [Google Scholar] [CrossRef]
- Wilson, H.; Daane, K.M. Review of Ecologically-Based Pest Management in California Vineyards. Insects 2017, 8, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Liu, M.; Chen, X.; Chen, J.; Chen, F.; Li, H.; Hu, F. Intermediate herbivory intensity of an aboveground pest promotes soil labile resources and microbial biomass via modifying rice growth. Plant Soil 2013, 367, 437–447. [Google Scholar] [CrossRef]
- Stahl, E.; Hilfiker, O.; Reymond, P. Plant–arthropod interactions: Who is the winner? Plant J. 2018, 93, 703–728. [Google Scholar] [CrossRef]
- Collier, R.; Mazzi, D.; Folkedal Schjøll, A.; Schorpp, Q.; Thöming, G.; Johansen, T.J.; Meadow, R.; Meyling, N.V.; Cortesero, A.-M.; Vogler, U.; et al. The Potential for Decision Support Tools to Improve the Management of Root-Feeding Fly Pests of Vegetables in Western Europe. Insects 2020, 11, 369. [Google Scholar] [CrossRef]
- Mirek, Z.; Piękoś-Mirkowa, H.; Zając, A.; Zając, M. Flowering Plants and Pteridophytes of Poland a Checklist; W. Szafer Institute of Botany, Polish Academy of Sciences: Kraków, Poland, 2002. [Google Scholar]
- Denisiuk, Z. For the protection of the Vistula meadows in Kraków. Chrońmy Przyr. Ojcz. 1987, 43, 32–34. (In Polish) [Google Scholar]
- Perju, T.; Moldovan, I.; Bunescu, H. The iris seed weevil-Mononychus punctum-album Hbst. (Curculionidae, Coleoptera) sin Mononychus pseudacori Fb. Not. Bot. Horti Agrobot. Cluj-Napoca 1997, 27, 79–83. [Google Scholar] [CrossRef]
- Kostrakiewicz, K. Current state of the population of the Siberian Iris Iris sibirica at selected sites near. Kraków Chrońmy Przyr. Ojcz. 2001, 43, 30–32. (In Polish) [Google Scholar]
- Skuhrovec, J.; Gültekin, L.; Śmigala, M.; Winiarczyk, K.; Dąbrowska, A.; Gosik, R. Description of the immature stages of two Mononychus species (Coleoptera: Curculionidae: Ceutorhynchinae) and a study of the host preferences of M. punctumalbum for Iris species in central Europe. Acta Zool. 2018, 99, 296–318. [Google Scholar] [CrossRef]
- Herbst, J.F.W. Kritisches Verzeichniß meiner Insektensammlung, Archiv Der Insectengeschichte. Hrsg. Johann Caspar Füessly 1784, 5, 73–151. [Google Scholar]
- Letheren, A.; Hill, S.; Salie, J.; Parkman, J.; Chen, J. A Little Bug with a Big Bite: Impact of Hemlock Woolly Adelgid Infestations on Forest Ecosystems in the Eastern USA and Potential Control Strategies. Int. J. Environ. Res. Public Health 2017, 14, 438. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Świerszcz, S.; Nowak, S.; Hisorev, H.; Klichowska, E.; Wróbel, A.; Nobis, A.; Nobis, M. Red List of vascular plants of Tajikistan—the core area of the Mountains of Central Asia global biodiversity hotspot. Sci. Rep. 2020, 10, 6235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fijałkowski, D. List of Rarer Lublin Region. Plants. Fragm. Flor. Geobot. Pol. 1958, 3, 5–18. (In Polish) [Google Scholar]
- Fijałkowski, D.; Izdebski, K. Steppe Communities in the Lublin Upland; Sectio B; Annales UMCS: Lublin, Poland, 1959; Volume 11, pp. 167–200. (In Polish) [Google Scholar]
- Fijałkowski, D. Plant Complexes in the Lublin Region; UMCS Printing House: Lublin, Poland, 1991. (In Polish) [Google Scholar]
- Talbot, M.J.; White, R.G. Methanol fixation of plant tissue for Scanning Electron Microscopy improves preservation of tissue morphology and dimensions. Plant Methods 2013, 9, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Górnaś, P.; Rudzińska, M.; Grygier, A.; Ying, Q.; Mišina, I.; Urvaka, E.; Rungis, D. Sustainable valorization of oak acorns as a potential source of oil rich in bioactive compounds. Process. Saf. Environ. Protect. 2019, 128, 244–250. [Google Scholar] [CrossRef]
- Herák, D.; Blahovec, J.; Kabutey, A. Analysis of the axial pressing of bulk Jatropha curcas L. seeds using reciprocal slope transformation. Biosyst. Eng. 2014, 121, 67–76. [Google Scholar] [CrossRef]
- Kumhála, F.; Blahovec, J. Bulk properties of densified hop cones related to storage and throughput measurements. Biosyst. Eng. 2014, 126, 123–128. [Google Scholar] [CrossRef]
- Wajs, J.; Panek, J.; Frąc, M.; Stasiak, M. Influence of Long-Term Storage on the Caking Properties Determined in Punch Test and Fungal Contamination of Potato Starch and Wheat Flour. Materials 2021, 14, 331. [Google Scholar] [CrossRef]
- Dąbrowska, A.; Śmigała, M.; Denisow, B.; Winiarczyk, K. Biology of flowering and insect visitors of Iris aphylla L. (Iridaceae). Turk. J. Bot. 2019, 43, 798–808. [Google Scholar] [CrossRef]
- Dobrzański, B.; Szot, B. Mechanical properties of pea seed coat. Int. Agrophysics 1997, 11, 301–306. [Google Scholar]
- Frączek, J.; Hebda, T.; Ślipek, Z.; Kurpaska, S. Effect of seed coat thickness on seed hardness. Can. Biosyst. Eng. 2005, 47, 4.1–4.5. [Google Scholar]
- Ballesteros, D.; Walters, C. Detailed characterization of mechanical properties and molecular mobility within dry seed glasses: Relevance to the physiology of dry biological systems. Plant J. 2011, 68, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Moya, M.; Aguado, P.J.; Ayuga, F. Mechanical properties of some granular agricultural materials used in silo design. Int. Agrophys. 2013, 27, 181–193. [Google Scholar] [CrossRef]
- Malaga-Toboła, U.; Łapka, M.; Kurek, M.; Łukasiewicz, M.; Kocira, S. Wood modification methods. Przem. Chem. 2017, 96, 1563–1566. [Google Scholar]
- Gawrysiak-Witulska, M.; Siger, A.; Rudzińska, M.; Stuper-Szablewska, K.; Rusinek, R. Effect of self-heating on the processing quality of rapeseed. Int. Agrophys. 2018, 32, 313–323. [Google Scholar] [CrossRef]
- Malaga-Toboła, U.; Łapka, M.; Tabor, S.; Niesłony, A.; Findura, P. Influence of wood anisotropy on its mechanical properties in relation to the scale effect. Int. Agrophys. 2019, 33, 337–345. [Google Scholar] [CrossRef]
- Stropek, Z.; Gołacki, K. Stress relaxation of apples at different deformation velocities and temperatures. Trans. ASABE 2019, 62, 115–121. [Google Scholar] [CrossRef]
- Martinez, J.J.; Melgarejo, P.; Hernandez, F.; Salazar, D.M.; Martinez, R. Seed characterization of five new pomegranate (Punica granatum L.) varieties. Sci. Hortic. 2006, 110, 241–246. [Google Scholar] [CrossRef]
- Wróblewska, A.; Brzosko, E.; Czarnecka, B.; Nowosielski, J. High levels of genetic diversity in populations of Iris aphylla L. (Iridaceae), an endangered species in Poland. Bot. J. Linn. Soc. 2003, 142, 65–72. [Google Scholar] [CrossRef]
- Wróblewska, A.; Brzosko, E. The genetic structure of the steppe plant Iris aphylla L. at the northern limit of its geographical range. Bot. J. Linn. Soc. 2006, 152, 245–255. [Google Scholar] [CrossRef] [Green Version]
- Woźniak, W. Mechanical properties of wheat grain in relation to internal cracks. Int. Agrophysics 2001, 15, 59–64. [Google Scholar]
- Yashchuk, N.O.; Matseiko, L.M.; Bober, A.V. The quality of wheat grain of different varieties, depending on the infection by granary weevil (Sitophilus granarius L.). Ukr. J. Ecol. 2018, 8, 394–401. [Google Scholar] [CrossRef]
- Yadav, D.S.; Chander, S. Simulation of rice planthopper damage for developing pest management decision support tools. Crop. Prot. 2010, 29, 267–276. [Google Scholar] [CrossRef]
Variety/Month | Capsule Max Load (N) | Seed Max Load (N) | Plant h [cm] | Capsule Wall Thickness [mm] | Seed Mass Per Capsule [g] | Seed Wall Thickness [mm] | Number of Seeds Per Capsule | Seed Mass [g] | Seed Length [mm] | Seed Width [mm] |
---|---|---|---|---|---|---|---|---|---|---|
I. aphylla/6 | 6.59 | 16.60 | 34.99 | 1.31 | 1.51 | 1.50 | 89.91 | 0.017 | 4.3 | 2.7 |
SD | 0.92 | 29.72 | 0.08 | 0.01 | 0.01 | 0.01 | 0.83 | 0.0001 | 0.6 | 0.5 |
I. aphylla/9 | 2.94 | 174.46 | 35.01 | 1.1 | 1.35 | 1.22 | 90.11 | 0.015 | 4.0 | 2.5 |
SD | 1.28 | 68.97 | 0.09 | 0.01 | 0.01 | 0.01 | 0.93 | 0.001 | 0.6 | 0.5 |
I. sibirica/6 | 9.28 | 15.97 | 120.01 | 0.45 | 3.0 | 0.10 | 148.80 | 0.02 | 2.6 | 1.4 |
SD | 0.61 | 4.23 | 0.09 | 0.01 | 0.01 | 0.01 | 0.82 | 0.0001 | 0.6 | 0.5 |
I. sibirica/9 | 6.26 | 344.90 | 118.99 | 0.32 | 2.7 | 0.08 | 150.30 | 0.018 | 2.4 | 1.3 |
SD | 1.48 | 95.81 | 0.09 | 0.01 | 0.01 | 0.01 | 0.94 | 0.001 | 0.6 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Śmigała, M.; Winiarczyk, K.; Dąbrowska, A.; Domaciuk, M.; Gancarz, M. Determination of the Influence of Mechanical Properties of Capsules and Seeds on the Susceptibility to Feeding of Mononychus pubctumalbum in Endangered Plant Species Iris aphylla L. and Iris sibirica L. Sensors 2021, 21, 2209. https://doi.org/10.3390/s21062209
Śmigała M, Winiarczyk K, Dąbrowska A, Domaciuk M, Gancarz M. Determination of the Influence of Mechanical Properties of Capsules and Seeds on the Susceptibility to Feeding of Mononychus pubctumalbum in Endangered Plant Species Iris aphylla L. and Iris sibirica L. Sensors. 2021; 21(6):2209. https://doi.org/10.3390/s21062209
Chicago/Turabian StyleŚmigała, Magdalena, Krystyna Winiarczyk, Agnieszka Dąbrowska, Marcin Domaciuk, and Marek Gancarz. 2021. "Determination of the Influence of Mechanical Properties of Capsules and Seeds on the Susceptibility to Feeding of Mononychus pubctumalbum in Endangered Plant Species Iris aphylla L. and Iris sibirica L." Sensors 21, no. 6: 2209. https://doi.org/10.3390/s21062209