Error Analysis of Accelerometer- and Magnetometer-Based Stationary Alignment
Abstract
1. Introduction
2. AHRS Alignment Formulations
2.1. TRIAD Method
2.2. QUEST Method
2.3. FQA Method
2.4. ATAN Method
3. Error Analysis
3.1. TRIAD Method
3.2. QUEST Method
3.3. FQA/ATAN Methods
4. Simulation Results
5. Experimental Results
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Groves, P.D. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems; Artech House Remote Sensing Library: London, UK, 2013. [Google Scholar]
- Chang, L.; Hu, B.; Li, Y. Backtracking Integration for Fast Attitude Determination-Based Initial Alignment. IEEE Trans. Instrum. Meas. 2015, 64, 795–803. [Google Scholar] [CrossRef]
- Chang, L.; Li, J.; Chen, S. Initial Alignment by Attitude Estimation for Strapdown Inertial Navigation Systems. IEEE Trans. Instrum. Meas. 2015, 64, 784–794. [Google Scholar] [CrossRef]
- Rogers, R.M. Applied Mathematics in Integrated Navigation Systems; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2007. [Google Scholar]
- Thompson, E.H.; Farrell, J.L.; Knight, J.W. Alignment Methods for Strapdown Inertial Systems. J. Spacecr. Rockets 1966, 3, 1432–1434. [Google Scholar] [CrossRef]
- Bar-Itzhack, I.Y.; Berman, N. Control theoretic approach to inertial navigation systems. J. Guid. Control Dynam. 1988, 11, 237–245. [Google Scholar] [CrossRef]
- Ali, A.; El-Sheimy, N. Low-Cost MEMS-Based Pedestrian Navigation Technique for GPS-Denied Areas. J. Sens. 2013, 2013, 197090. [Google Scholar] [CrossRef]
- Särkkä, O.; Nieminem, T.; Kettunen, L. A Multi-Position Calibration Method for Consumer-Grade Accelerometers, Gyroscopes, and Magnetometers to Field Conditions. IEEE Sens. J. 2017, 17, 3470–3481. [Google Scholar] [CrossRef]
- Li, W.; Wu, W.; Wang, J.; Wu, M. A novel backtracking navigation scheme for Autonomous Underwater Vehicles. Measurement 2014, 47, 496–504. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, G. Calibration of Miniature Inertial and Magnetic Sensor Units for Robust Attitude Estimation. IEEE Trans. Instrum. Meas. 2014, 63, 711–718. [Google Scholar] [CrossRef]
- Valenti, R.G.; Dryanovski, I.; Xiao, J. A Linear Kalman Filter for MARG Orientation Estimation Using the Algebraic Quaternion Algorithm. IEEE Trans. Instrum. Meas. 2016, 65, 467–481. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, Z.; Chen, J.; Fourati, H.; Li, R. Fast Complementary Filter for Attitude Estimation Using Low-Cost MARG Sensors. IEEE Sens. J. 2016, 16, 6997–7007. [Google Scholar] [CrossRef]
- Koksal, N.; Jalalmaab, M.; Fidan, B. Adaptive Linear Quadratic Attitude Tracking Control of a Quadrotor UAV Based on IMU Sensor Data Fusion. Sensors 2019, 19, 46. [Google Scholar] [CrossRef]
- Ligorio, G.; Bergamini, E.; Pasciuto, I.; Vannozzi, G.; Cappozzo, A.; Sabatini, A.M. Assessing the Performance of Sensor Fusion Methods: Application to Magnetic-Inertial-Based Human Body Tracking. Sensors 2016, 16, 153. [Google Scholar] [CrossRef]
- Wittmann, F.; Lambercy, O.; Gassert, R. Magnetometer-Based Drift Correction During Rest in IMU Arm Motion Tracking. Sensors 2019, 19, 1312. [Google Scholar] [CrossRef]
- Lee, J.K.; Jeon, T.H. Magnetic Condition-Independent 3D Joint Angle Estimation Using Inertial Sensors and Kinematic Constraints. Sensors 2019, 19, 5522. [Google Scholar] [CrossRef]
- Patonis, P.; Patias, P.; Tziavos, I.N.; Rossikopoulos, D.; Margaritis, K.G. A Fusion Method for Combining Low-Cost IMU/Magnetometer Outputs for Use in Applications on Mobile Devices. Sensors 2018, 18, 2616. [Google Scholar] [CrossRef]
- Feng, G.; Wu, W.; Wang, J. Observability Analysis of a Matrix Kalman Filter-Based Navigation System Using Visual/Inertial/Magnetic Sensors. Sensors 2012, 12, 8877–8894. [Google Scholar] [CrossRef]
- Sabatini, A.M. Kalman-Filter-Based Orientation Determination Using Inertial/Magnetic Sensors: Observability Analysis and Performance Evaluation. Sensors 2011, 11, 9182–9206. [Google Scholar] [CrossRef]
- Valenti, R.G.; Dryanovski, I.; Xiao, J. Keeping a good attitude: A quaternion-based orientation filter for IMUs and MARGs. Sensors 2015, 15, 19303–19330. [Google Scholar] [CrossRef]
- Sabatini, A.M. Variable-State-Dimension Kalman-Based Filter for Orientation Determination Using Inertial and Magnetic Sensors. Sensors 2012, 12, 8491–8506. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yu, S.; Liu, C.; Yaun, X.; Liu, S. A Dual-Linear Kalman Filter for Real-Time Orientation Determination System Using Low-Cost MEMS Sensors. Sensors 2016, 16, 264. [Google Scholar] [CrossRef]
- Bergamini, E.; Ligorio, G.; Summa, A.; Vannozzi, G.; Cappozzo, A.; Sabatini, A.M. Estimating Orientation Using Magnetic and Inertial Sensors and Different Sensor Fusion Approaches: Accuracy Assessment in Manual and Locomotion Tasks. Sensors 2014, 14, 18625–18649. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.; Li, Q.; Liu, T. How Magnetic Disturbance Influences the Attitude and Heading in Magnetic and Inertial Sensor-Based Orientation Estimation. Sensors 2018, 18, 76. [Google Scholar] [CrossRef]
- Black, H.D. A Passive System for Determining the Attitude of a Satellite. AIAA J. 1964, 2, 1350–1351. [Google Scholar] [CrossRef]
- Shuster, M.D.; Oh, S.D. Three-Axis Attitude Determination from Vector Observations. J. Guid. Control 1981, 4, 70–77. [Google Scholar] [CrossRef]
- Davenport, P.B. A Vector Approach to the Algebra of Rotations with Applications; D 4696; NASA: Greenbelt, MD, USA, 1968.
- Wahba, G. A Least Squares Estimate of Satellite Attitude. SIAM Rev. 1966, 8, 384–386. [Google Scholar] [CrossRef]
- Markley, F.L.; Crassidis, J.L. Fundamentals of Spacecraft Attitude Determination and Control; Springer: New York, NY, USA, 2014. [Google Scholar]
- Kuga, H.K.; Carrara, V. Attitude Determination with Magnetometers and Accelerometers to Use in Satellite Simulator. Math. Probl. Eng. 2013, 2013, 401282. [Google Scholar] [CrossRef][Green Version]
- Wu, J.; Wang, T.; Zhou, Z.; Yin, H.; Li, R. Analytic accelerometer-magnetometer attitude determination without reference information. Int. J. Micro Air Veh. 2018, 10, 318–329. [Google Scholar] [CrossRef]
- Yun, X.; Bachmann, E.R.; McGhee, R.B. A Simplified Quaternion-Based Algorithm for Orientation Estimation From Earth Gravity and Magnetic Field Measurements. IEEE Trans. Instrum. Meas. 2008, 57, 638–650. [Google Scholar]
- Wu, J.; Zhou, Z.; Fourati, H.; Cheng, Y. A Super Fast Attitude Determination Algorithm for Consumer-Level Accelerometer and Magnetometer. IEEE Trans. Consum. Electr. 2018, 64, 375–381. [Google Scholar] [CrossRef]
- Suh, Y.S. Simple-structured quaternion estimator separating inertial and magnetic sensor effects. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 2698–2706. [Google Scholar] [CrossRef]
- Caruso, M. Applications of Magnetoresistive Sensors in Navigation Systems. Sens. Actuators SAE SP-1220 1997, 1, 15–21. [Google Scholar]
- Farrell, J.A. Aided Navigation: GPS with High Rate Sensors; McGraw-Hill Companies: New York, NY, USA, 2008. [Google Scholar]
- Gebre-Egziabher, D.; Hayward, R.C.; Powell, J.D. Design of Multi-Sensor Attitude Determination Systems. IEEE Trans. Aerosp. Electron. Syst. 2004, 40, 627–649. [Google Scholar] [CrossRef]
- Sotak, M. Testing the Coarse Alignment Algorithm Using Rotation Platform. Acta Polytech. Hung. 2010, 7, 87–107. [Google Scholar]
- Bistrov, V. Performance Analysis of Alignment Process of MEMS IMU. Int. J. Navig. Obs. 2012, 2012, 1–11. [Google Scholar] [CrossRef]
- Kluga, J.; Kluga, A.; Vecvagars, V. Magnetometer Error Models of Low-Cost Land Vehicle Navigation System. Elektron. Elektrotech. 2016, 22, 57–60. [Google Scholar] [CrossRef][Green Version]
- Zhu, R.; Zhou, Z. A Small Low-Cost Hybrid Orientation System and Its Error Analysis. IEEE Sens. J. 2009, 9, 223–230. [Google Scholar] [CrossRef]
- Del Rosario, M.B.; Lovell, N.H.; Redmond, S.J. Quaternion-Based Complementary Filter for Attitude Determination of a Smartphone. IEEE Sens. J. 2016, 16, 6008–6017. [Google Scholar] [CrossRef]
- Sabatini, A.M. Quaternion-Based Extended Kalman Filter for Determining Orientation by Inertial and Magnetic Sensing. IEEE Trans. Bio-Med. Eng. 2006, 53, 1346–1356. [Google Scholar] [CrossRef]
- Kaniewski, P.; Kazubek, J. Integrated System for Heading Determination. Acta Phys. Pol. A 2009, 116, 325–330. [Google Scholar] [CrossRef]
- Li, W.; Wang, J. Effective Adaptive Kalman Filter for MEMS-IMU/Magnetometers Integrated Attitude and Heading Reference Systems. J. Navigation 2013, 66, 99–113. [Google Scholar] [CrossRef]
- Caruso, M.J. Applications of Magnetic Sensors for Low Cost Compass Systems. In Proceedings of the IEEE 2000, Position Location and Navigation Symposium (Cat. No.00CH37062), San Diego, CA, USA, 13–16 March 2000; pp. 177–184. [Google Scholar]
- Liu, S.W.; Zhang, Z.N. A high accuracy magnetic heading system composed of fluxgate magnetometers and a microcomputer. In Proceedings of the IEEE National Aerospace and Electronics Conference, Dayton, OH, USA, 22–26 May 1989; pp. 148–152. [Google Scholar]
- Liu, S.W.; Zhaung, J.D.; Hung, J.C.; Wang, H.N. Compass deviation analysis and compensation for a three-axis strapdown magnetic heading system. In IFAC 11th Triennial World Congress; IFAC: Tallinn, Estonia, 1990; pp. 471–474. [Google Scholar]
- Kayton, M.; Fried, W.R. Avionics Navigation Systems; John Wiley & Sons: New York, NY, USA, 1997. [Google Scholar]
- Gebre-Egziabher, D.; Elkaim, G.H.; Powell, J.D.; Parkinson, B.W. Calibration of Strapdown Magnetometers in the Magnetic Field Domain. J. Aerosp. Eng. 2006, 19, 1–45. [Google Scholar] [CrossRef]
- Chen, W.; Chen, R.; Chen, Y.; Kuusniemi, H.; Wang, J. An Effective Pedestrian Dead Reckoning Algorithm Using a Unified Heading Error Model. In Proceedings of the Position Location and Navigation Symposium, Indian Wells, CA, USA, 4–6 May 2010; pp. 340–347. [Google Scholar]
- Li, X.; Li, Z. Vector-Aided In-Field Calibration Method for Low-End MEMS Gyros in Attitude and Heading Reference Systems. IEEE Trans. Instrum. Meas. 2014, 63, 2675–2681. [Google Scholar] [CrossRef]
- Chang, G.; Xu, T.; Wang, Q. Error analysis of Davenport’s q method. Automatica 2017, 75, 217–220. [Google Scholar] [CrossRef]
- Kirkko-Jaakkola, M.; Collin, J.; Takala, J. Bias Prediction for MEMS Gyroscopes. IEEE Sens. J. 2012, 12, 2157–2163. [Google Scholar] [CrossRef]
- Wu, Y.; Luo, S. On Misalignment Between Magnetometer and Inertial Sensors. IEEE Sens. J. 2016, 16, 6288–6297. [Google Scholar] [CrossRef]
- Hu, X.; Liu, Y.; Wang, Y.; Yan, D. Errors Analysis and Compensation of Low Cost Attitude Measurement System. In Proceedings of the 51th World Congress on Intelligent Control and Automation, Hangzhou, China, 14–18 June 2004; pp. 3688–3691. [Google Scholar]
- Včelák, J.; Ripka, P.; Kubík, J.; Platil, A.; Kašpar, P. AMR navigation systems and methods of their calibration. Sens. Actuators A Phy. 2006, 123–124, 122–128. [Google Scholar] [CrossRef]
- Včelák, J.; Ripka, P.; Platil, A.; Kubík, J.; Kašpar, P. Errors of AMR compass and methods of their compensation. Sens. Actuators A Phy. 2006, 129, 53–57. [Google Scholar] [CrossRef]
- Bachmann, E.R.; Yun, X.; Peterson, C.W. An Investigation of the Effects of Magnetic Variations on Inertial/Magnetic Orientation Sensors. In Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 26 April–1 May 2004; pp. 1115–1122. [Google Scholar]
- Bachmann, E.R.; Yun, X.; Brumfield, A. Limitations of Attitude Estimation Algorithms for Inertial/Magnetic Sensor Modules. IEEE Robot. Autom. Mag. 2007, 14, 76–87. [Google Scholar] [CrossRef]
- Yadav, N.; Bleakley, C. Accurate Orientation Estimation Using AHRS under Conditions of Magnetic Distortion. Sensors 2014, 14, 20008–20024. [Google Scholar] [CrossRef]
- Fan, B.; Li, Q.; Wang, C.; Liu, T. An Adaptive Orientation Estimation Method for Magnetic and Inertial Sensors in the Presence of Magnetic Disturbances. Sensors 2017, 17, 1161. [Google Scholar] [CrossRef]
- Markley, F.L. Attitude determination using two vector measurements. In Proceedings of the 1999 Flight Mechanics Symposium, NASA Goddard Space Flight Center: Greenbelt, MD, USA, 18–20 May 1999; pp. 39–52. [Google Scholar]
- Titterton, D.H.; Weston, J.L. Strapdown Inertial Navigation Technology; Institution of Electrical Engineers: Reston, VA, USA, 2004. [Google Scholar]
- Bekir, E. Introduction to Modern Navigation Systems; World Scientific: Toh Tuck Link, Singapore, 2007. [Google Scholar]
- Savage, P.G. Strapdown Analytics; Strapdown Analytics, Strapdown Associates: Maple Plain, MN, USA, 2007. [Google Scholar]
- Jiang, Y.F.; Lin, Y.P. Error estimation of quaternion transformations. IEEE Trans. Aerosp. Electron. Syst. 1991, 27, 634–639. [Google Scholar] [CrossRef]
- Lovren, N.; Pieper, J.K. Error Analysis of Direction Cosines and Quaternion Parameters Techniques for Aircraft Attitude Determination. IEEE Trans. Aerosp. Electron. Syst. 1998, 34, 983–989. [Google Scholar] [CrossRef]
- Choukroun, D.; Weiss, H.; Bar-Itzhack, I.Y.; Oshman, Y. Direction Cosine Matrix Estimation from Vector Observations using a Matrix Kalman Filter. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 61–79. [Google Scholar] [CrossRef]
- Bar-Itzhack, I.Y.; Meyer, J.; Fuhrmann, P.A. Strapdown Matrix Orthogonalization: The Dual Iterative Algorithm. IEEE Trans. Aerosp. Electron. Syst. 1976, 12, 32–38. [Google Scholar] [CrossRef]
- Savage, P.G. Strapdown Inertial Integration Algorithm Design Part I: Attitude Algorithms. J. Guid. Control Dynam. 1998, 21, 19–28. [Google Scholar] [CrossRef]
- Silva, F.O.; Hemerly, E.M.; Filho, W.C.L.; Kuga, H.K. A Fast In-Field Coarse Alignment and Bias Estimation Method for Stationary Intermediate-Grade IMUs. IEEE Trans. Instrum. Meas. 2018, 67, 831–838. [Google Scholar] [CrossRef]
- Silva, F.O.; Filho, R.M.; Vieira, L.A.; Kuga, H.K.; Barros, E.A. Three-axis Attitude Determination with Pseudo-Bias Estimation from Gravity/Magnetic Vector Observations. J. Guid. Control Dynam. 2020, 43, 2237–2257. [Google Scholar] [CrossRef]
- Silva, F.O.; Uwineza, J.B.; Rahman, F.S.; Jiang, Z.; Hu, W.; Carvalho, G.S.; Farrell, J.A. Dual-antenna GNSS-aided INS stationary alignment with sensor parameter estimation. IEEE Trans. Veh. Technol. 2021, submitted. [Google Scholar]
- Silva, F.O.; Hemerly, E.M.; Filho, W.C.L. On the error state selection for stationary SINS alignment and calibration Kalman filters—Part II: Observability/Estimability Analysis. Sensors 2017, 17, 439. [Google Scholar] [CrossRef]
- Chulliat, A.; Macmillan, S.; Alken, P.; Beggan, C.; Nair, M.; Hamilton, B.; Woods, A.; Ridley, V.; Maus, S.; Thompson, A. The US/UK World Magnetic Model for 2015–2020; Technical Report; NOAA: Boulder, CO, USA, 2015.
- Zhang, Z. Two-Step Calibration Methods for Miniature Inertial and Magnetic Sensor Units. IEEE Trans. Ind. Electron. 2015, 62, 3714–3723. [Google Scholar] [CrossRef]
- Britting, K.R. Inertial Navigation Systems Analysis; John Wiley & Sons Canada, Limited: New York, NY, USA, 1971. [Google Scholar]
- Bar-Itzhack, I.Y.; Harman, R.R. Optimized TRIAD algorithm for attitude determination. J. Guid. Control Dynam. 1996, 20, 208–211. [Google Scholar] [CrossRef]
- Shuster, M.D. The Optimization of TRIAD. J. Astronaut. Sci. 2007, 55, 245–257. [Google Scholar] [CrossRef]
- JCGM. Joint Committee for Guides in Metrology 100: Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement; Technical Report; JCGM: Sèvres, France, 2008. [Google Scholar]
- Gebre-Egziabher, D.; Elkaim, G.H. MAV Attitude Determination by Vector Matching. IEEE Trans. Aerosp. Electron. Syst. 2008, 44, 1012–1028. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, Z.; Gao, B.; Li, R.; Cheng, Y.; Fourati, H. Fast Linear Quaternion Attitude Estimator Using Vector Observations. IEEE Trans. Autom. Sci. Eng. 2018, 15, 307–319. [Google Scholar] [CrossRef]
- Secer, G.; Barshan, B. Improvements in deterministic error modeling and calibration of inertial sensors and magnetometers. Sens. Actuators A Phy. 2016, 247, 522–538. [Google Scholar] [CrossRef]
- JCGM. Evaluation of Measurement Data—Supplement 1 to the “Guide to the Expression of Uncertainty in Measurement”—Propagation of Distributions Using a Monte Carlo Method; Technical Report; JCGM: Sèvres, France, 2008. [Google Scholar]
- Oliveira, A.M.; Kuga, H.K.; Carrarra, V. Air bearing platforms for simulation of spacecraft attitude control systems. In Proceedings of the 17th International Symposium on Dynamical Problems of Mechanics, Natal, RN, Brazil, 22–27 February 2015; pp. 22–27. [Google Scholar]
- Foster, C.C.; Elkaim, G.H. Extension of a Two-Step Calibration Methodology to Include Nonorthogonal Sensor Axes. IEEE Trans. Aerosp. Electron. Syst. 2008, 44, 1070–1078. [Google Scholar] [CrossRef]
- Finlay, C.C.; Maus, S.; Beggan, C.D.; Bondar, T.N.; Chambodut, A.; Chernova, T.A.; Chulliat, A.; Golovkov, V.P.; Hamilton, B.; Hamoudi, B.; et al. International Geomagnetic Reference Field: The eleventh generation. Geophys. J. Int. 2010, 183, 1216–1230. [Google Scholar]
- Silva, F.O. Generalized error analysis of analytical coarse alignment formulations for stationary SINS. Aerosp. Sci. Technol. 2018, 79, 500–505. [Google Scholar] [CrossRef]
Errors | TRIAD | QUEST | FQA/ATAN |
---|---|---|---|
[deg] | 0.6163 | 0 | 0 |
[deg] | 0.4084 | 0 | 0 |
[deg] | −0.2874 | 0 | 0 |
[deg] | −0.2091 | 0 | 0 |
[deg] | 0.5224 | 0 | 0 |
[deg] | −0.0992 | 0 | 0 |
[deg] | 0.0779 | 0.1802 | 0.2871 |
[deg] | −0.8095 | −0.5542 | −0.2871 |
[deg] | 1.6754 | 1.6754 | 1.6754 |
Errors | TRIAD | QUEST | FQA | ATAN |
---|---|---|---|---|
[deg] | 0.6451 | 0.0000 | 0.0000 | 0.0000 |
±0.0405 | ±0.0000 | ±0.0000 | ±0.0000 | |
[deg] | 0.4235 | 0.0000 | 0.0000 | 0.0000 |
±0.0401 | ±0.0000 | ±0.0000 | ±0.0000 | |
[deg] | −0.2873 | 0.0000 | 0.0000 | 0.0000 |
±0.0036 | ±0.0000 | ±0.0000 | ±0.0000 | |
[deg] | −0.2070 | 0.0000 | 0.0000 | 0.0000 |
±0.0076 | ±0.0000 | ±0.0000 | ±0.0000 | |
[deg] | 0.5197 | 0.0000 | 0.0000 | 0.0000 |
±0.0190 | ±0.0000 | ±0.0000 | ±0.0000 | |
[deg] | −0.1049 | 0.0000 | 0.0000 | 0.0000 |
±0.0013 | ±0.0000 | ±0.0000 | ±0.0000 | |
[deg] | 0.0782 | 0.1824 | 0.2862 | 0.2862 |
±0.0084 | ±0.0045 | ±0.0036 | ±0.0036 | |
[deg] | −0.8140 | −0.5630 | −0.2911 | −0.2896 |
±0.0191 | ±0.0079 | ±0.0037 | ±0.0036 | |
[deg] | 1.6595 | 1.6471 | 1.6481 | 1.6484 |
±0.0391 | ±0.0387 | ±0.0387 | ±0.0387 |
Parameter | Standard Deviation |
---|---|
Latitude () [deg] | 30 |
Longitude () [deg] | 60 |
Altitude () [m] | 1000 |
Accelerometer biases (, , ) [mg] | 1 |
Magnetometer biases (, , ) [mG] | 5 |
Gravity magnitude () [mg] | 0.005 |
Earth’s magnetic flux density magnitude () [mG] | 0.1 |
Earth’s magnetic flux density inclination/declination angles (, ) [deg] | 0.1 |
Error Deviations | TRIAD | QUEST | FQA | ATAN |
---|---|---|---|---|
[deg] | 0.0607 | 0.0000 | 0.0000 | 0.0000 |
±0.0048 | ±0.0000 | ±0.0000 | ±0.0000 | |
[deg] | 0.0462 | 0.0000 | 0.0000 | 0.0000 |
±0.0048 | ±0.0000 | ±0.0000 | ±0.0000 | |
[deg] | 0.0001 | 0.0000 | 0.0000 | 0.0000 |
±0.0000 | ±0.0000 | ±0.0000 | ±0.0000 | |
[deg] | −0.0001 | 0.0000 | 0.0000 | 0.0000 |
±0.0001 | ±0.0000 | ±0.0000 | ±0.0000 | |
[deg] | −0.0001 | 0.0000 | 0.0000 | 0.0000 |
±0.0002 | ±0.0000 | ±0.0000 | ±0.0000 | |
[deg] | −0.0038 | 0.0000 | 0.0000 | 0.0000 |
±0.0007 | ±0.0000 | ±0.0000 | ±0.0000 | |
[deg] | −0.0001 | −0.0004 | 0.0000 | 0.0000 |
±0.0001 | ±0.0001 | ±0.0000 | ±0.0001 | |
[deg] | 0.0001 | −0.0006 | 0.0000 | 0.0000 |
±0.0002 | ±0.0001 | ±0.0000 | ±0.0001 | |
[deg] | 0.0000 | −0.0010 | −0.0010 | 0.0018 |
±0.0004 | ±0.0020 | ±0.0020 | ±0.0039 |
Errors | TRIAD | QUEST | FQA/ATAN |
---|---|---|---|
[deg] | 2.7353 | 0 | 0 |
[deg] | 2.8126 | 0 | 0 |
[deg] | 0.1069 | 0 | 0 |
[deg] | 0.2463 | 0 | 0 |
[deg] | −0.6151 | 0 | 0 |
[deg] | 0.0369 | 0 | 0 |
[deg] | 0.1597 | −0.1290 | −0.0865 |
[deg] | 0.6423 | −0.0790 | 0.0272 |
[deg] | 1.9875 | 1.9875 | 1.9875 |
Errors | TRIAD | QUEST | FQA | ATAN |
---|---|---|---|---|
[deg] | 2.8309 | 0.0000 | 0.0000 | 0.0000 |
±0.0064 | ±0.0000 | ±0.0000 | ±0.0000 | |
[deg] | 2.9083 | 0.0000 | 0.0000 | 0.0000 |
±0.0094 | ±0.0000 | ±0.0000 | ±0.0000 | |
[deg] | 0.1097 | 0.0000 | 0.0000 | 0.0000 |
±0.0072 | ±0.0000 | ±0.0000 | ±0.0000 | |
[deg] | 0.2387 | 0.0000 | 0.0000 | 0.0000 |
±0.0016 | ±0.0000 | ±0.0000 | ±0.0000 | |
[deg] | −0.6095 | 0.0000 | 0.0000 | 0.0000 |
±0.0042 | ±0.0000 | ±0.0000 | ±0.0000 | |
[deg] | 0.0358 | 0.0000 | 0.0000 | 0.0000 |
±0.0027 | ±0.0000 | ±0.0000 | ±0.0000 | |
[deg] | 0.1661 | −0.1065 | −0.0704 | −0.0704 |
±0.0065 | ±0.0065 | ±0.0068 | ±0.0068 | |
[deg] | 0.6384 | −0.0679 | 0.0292 | 0.0293 |
±0.0049 | ±0.0050 | ±0.0063 | ±0.0063 | |
[deg] | 2.0622 | 1.9672 | 1.9672 | 1.9672 |
±0.0061 | ±0.0059 | ±0.0059 | ±0.0059 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, F.O.; Paiva, L.P.S.; Carvalho, G.S. Error Analysis of Accelerometer- and Magnetometer-Based Stationary Alignment. Sensors 2021, 21, 2040. https://doi.org/10.3390/s21062040
Silva FO, Paiva LPS, Carvalho GS. Error Analysis of Accelerometer- and Magnetometer-Based Stationary Alignment. Sensors. 2021; 21(6):2040. https://doi.org/10.3390/s21062040
Chicago/Turabian StyleSilva, Felipe O., Lucas P. S. Paiva, and Gustavo S. Carvalho. 2021. "Error Analysis of Accelerometer- and Magnetometer-Based Stationary Alignment" Sensors 21, no. 6: 2040. https://doi.org/10.3390/s21062040
APA StyleSilva, F. O., Paiva, L. P. S., & Carvalho, G. S. (2021). Error Analysis of Accelerometer- and Magnetometer-Based Stationary Alignment. Sensors, 21(6), 2040. https://doi.org/10.3390/s21062040