Control Strategies and Performance Assessment of Upper-Limb TMR Prostheses: A Review
Abstract
:1. Introduction
2. Targeted Muscle Reinnervation
3. Aim of the Study
4. Materials and Methods
- Be a study on upper limb prosthesis users that underwent TMR surgery.
- Concern control techniques in upper limb prosthesis.
- Involve both direct and pattern recognition control strategies.
- Use methods for evaluating the performance of the prosthetic control.
- Be a full-length publication in a peer-reviewed journal or in conference proceedings.
- Pattern Recognition strategy—10 papers: Mastinu et al. (2018) [28], Kuiken et al. (2009) [35], Smith et al. (2013) [36], Huang et al. (2008) [37], Zhou et al. (2007) [38], Batzianoulis et al. (2019) [39], Batzianoulis et al. (2018) [40], Xu et al. (2018) [41], Hargrove et al. (2018) [42], and Tkach et al. (2014) [43].
- the number of the enrolled patients;
- the amputation level: bilateral shoulder disarticulation (BSD), shoulder disarticulation (SD), and transhumeral (TH);
- the number of reinnervated sites/control sites after the TMR surgery;
- the use of prostheses/virtual reality (VR);
- the number of controllable DoF/motion classes; and,
- the adopted performance evaluation methods.
Study | No. of Patients | Amp. Level | No. of Reinnervated Sites/Control Sites | Prostheses/ Virtual Reality | DoF/ Motion Classes | Performance Evaluation Methods |
---|---|---|---|---|---|---|
Kuiken et al. [21] | 1 | BSD | 4 reinnervated sites/ 3 muscle control sites | Prosthesis—DC | 2 | BBT, CRT |
Kuiken et al. [31] | 2 | BSD, TH | 4 reinnervated sites/ 3 muscle control sites (BSD) 2 muscle sites (TH) | Prosthesis—DC | 2 | BBT, CRT, WMFT, AMPS |
Kuiken et al. [24] | 1 | TH | 4 muscle sites and 2 sensory sites | Prosthesis—DC | 2 | BBT, AMPS, light touch, graded pressure, texture, edge detection, and thermal feedback |
Miller et al. [32] | 1 | BSD | 4 reinnervated sites | Prosthesis—DC | 3 | BBT, CRT, Cubbies, Cups |
O’Shaughnessy et al. [33] | 3 | TH | 2 reinnervated sites/ 4 control sites | Prosthesis—DC | 2 | BBT, CRT, AMPS |
Miller et al. [34] | 6 | SD, TH | 2 reinnervated sites (TH), 4 reinnervated sites (SD) | Prosthesis—DC | 2 | BBT, CRT, AMPS |
Mastinu et al. [28] | 2 | TH | 2 reinnervated sites | PR without prosthesis | 4 discrete hand and elbow motions | accuracy offline, classification error rate of LDA with 4 time domain features (MAV, WL, ZC, SSC) |
Kuiken et al. [35] | 5 | SD, TH | 4 reinnervated sites, 4 control sites | PR without prosthesis—VR | 10 discrete elbow, hand and wrist motions | accuracy offline, motion selection time, motion completion time, and motion completion rate of LDA with TD features [38] |
Smith et al. [36] | 5 | SD, TH | 3–4 reinnervated sites (SD1, SD2), 2 reinnervated sites (TH) | PR without prosthesis | 9 discrete elbow, hand and wrist motions | classification error rate of LDA with TD features [48] |
Haung et al. [37] | 3 | BSD, TH | 4 reinnervated sites (BSD), 4–2 reinnervated sites (STH, LTH) | PR without prosthesis | 15 discrete elbow, hand and wrist motions | offline accuracy of LDA classifier with TD features (MAV, ZC, SSC, WL) |
Zhou et al. [38] | 4 | BSD, STH, LTH | 4 reinnervated sites (BSD), 4–2 reinnervated sites (STH, LTH) | PR without prosthesis | 16 discrete movements of the arm, hand, and finger/thumb | offline accuracy of LDA classifier with TD feature set, and a combination of AR-RMS |
Batzianoulis et al. [40] | 2 | TR | TMR surgery for the neuroma pain, not for control sites | PR without prosthesis | 5 grasp types (prismatic-2 fingers, precision disk, palm pinch, lateral, prismatic-4 fingers) | offline accuracy, standard errors of LDA, two SVMs, and ESN Network |
Batzianoulis et al. [39] | 2 | TR | TMR surgery for the neuroma pain, not for control sites | PR without prosthesis | 3 grasp types (precision disk, lateral, and palm pinch) | offline accuracy of LDA classifier with TD feature |
Xu et al. [41] | 1 | TH | 3 reinnervated sites/ 5 control sites | Prosthesis—PR | 6 discrete elbow, wrist and hand motions | offline accuracy, ARAT, LDA classifier with TD features (MAV, WL, ZC, SSC) |
Hargrove et al. [42] | 9 | TH | not described | Prosthesis and VR—PR | 6 discrete elbow, wrist and hand motions | SHAP, JTHFT, CRT, BBT, ACMC, the classification error rate, completion time, failure rate of LDA classifier with TDAR |
Tkach et al. [43] | 4 | SD, TH | 4 reinnervated sites (TH), 2 reinnervated sites (SD) | PR without prosthesis—VR | 8 discrete and combined elbow, wrist and hand motions | offline accuracy of the LDA classifier with AR feature set |
Hargrove et al. [44] | 4 | SD, TH | 4–5 reinnervated control sites | Prosthesis—DC and PR | 2 DoFs (sequentially PR system) | BBT, BST, CRT, classification error rates |
Wurth et al. [45] | 1 | TH | 4 control sites | PR and DC without prosthesis—VR | 2 DoFs (sequentially and simultaneously PR systems) | FTAT, throughput (bits/second), path efficiency (%), completion rate (%) |
Hargrove et al. [46] | 8 | TH | 4 control sites | Prosthesis—DC and PR | 2 DoFs | ACMC, SHAP, BBT, CRT |
Young et al. [47] | 3 | SD, TH | 2 reinnervated sites/ 4 control sites | Prosthesis—DC and PR | 2 DoFs (sequentially and simultaneously PR systems) | TAC test (completion time, completion rate, length error), offline classification error |
5. Control Strategies
5.1. Direct Control
5.2. Control via Pattern Recognition
5.3. Comparison between DC and PR Strategies
6. Performance Evaluation Methods
6.1. Direct Control
6.2. Control via Pattern Recognition
6.3. Comparison between DC and PR Strategies
7. Results and Discussion
Clinical Applications
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACMC | Assessment for Capacity of Myoelectric Control |
ADL | Activities of Daily Living |
AMPS | Assessment of Motor and Process Skills |
AR | Auto Regressive |
ARAT | Action Research Arm Test |
BBT | Box and Block Test |
BSD | Bilateral Shoulder Disarticulation |
CRT | Clothespin Relocation Test |
DC | Direct Control |
DoF | Degree of Freedom |
EMG | ElectroMyoGraphy |
ESN | Echo State Network |
F/E | Flexion/Extension |
FSR | Force Sensor Resistor |
HD | High Density |
HT | Higher Threshold |
I/E | Intra/Extra |
imEMG | intramuscolarEMG |
JTHFT | Jebsen-Taylor test of Hand Function |
LDA | Linear Discriminant Analysis |
MAV | Mean Absolute Value |
mcr | motion completion rate |
mct | motion completion time |
MCU | MicroController Unit |
MLP | Multi Layer Perceptron |
mst | motion selection time |
NLR | Nonlinear Logistic Regression |
O/C | Open/Close |
P/S | Pronation/Supination |
PLP | Phantom Limb Pain |
PR | Pattern Recognition |
PRISMA | Preferred Reporting Items for Systematics reviews and Meta-Analyses |
RMS | Root Mean Square |
ROM | Range Of Motion |
SD | Shoulder Disarticulation |
sEMG | surfaceEMG |
seqPR | sequential PR |
SHAP | Southampton Hand Assessment Procedure |
simPR | simultaneous PR |
SSC | Slope Sign Changes |
ST | Standard Threshold |
SVM | Support Vector Machine |
TAC | Target Achievement Control |
TD | Time Domain |
TD-AR | Time Domain and Auto Regressive |
TH | Trans-Humeral |
TMR | Targeted Muscle Reinnervation |
TSR | Targeted Sensory Reinnervation |
VR | Virtual Reality |
WL | Waveform Length |
WMFT | Wolf Motor Functions Tests |
ZC | Zero Crossing |
References
- LeBlanc, M. Give Hope-Give a Hand. The LN-4 Prosthetic Hand. 2008. Available online: https://web.stanford.edu/class/engr110/2011/LeBlanc-03a.pdf (accessed on 10 May 2011).
- Technical Report: Bionic Technologies and Disabilities: The Challenges of Limb Prosthetics. Available online: https://www.inail.it/cs/internet/docs/alg-evento-workshop-dcod-sfide-protesica-2019.pdf (accessed on 18 November 2019).
- Montague, R. Amputee and Prosthetic Rehabilitation—Standards and Guidelines, 2nd ed.; British Society of Rehabilitation Medicine: London, UK, 2003; p. 13. Available online: https://www.bsrm.org.uk/downloads/ars-gfinaltext.pdf (accessed on 21 October 2003).
- Pomares, G.; Coudane, H.; Dap, F.; Dautel, G. Epidemiology of traumatic upper limb amputations. Orthop. Traumatol. Surg. Res. 2018, 104, 273–276. [Google Scholar] [CrossRef]
- Ziegler-Graham, K.; MacKenzie, E.J.; Ephraim, P.L.; Travison, T.G.; Brookmeyer, R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch. Phys. Med. Rehabil. 2008, 89, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Ciancio, A.L.; Cordella, F.; Barone, R.; Romeo, R.A.; Bellingegni, A.D.; Sacchetti, R.; Davalli, A.; Di Pino, G.; Ranieri, F.; Di Lazzaro, V.; et al. Control of prosthetic hands via the peripheral nervous system. Front. Neurosci. 2016, 10, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordella, F.; Di Corato, F.; Loianno, G.; Siciliano, B.; Zollo, L. Robust pose estimation algorithm for wrist motion tracking. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 3746–3751. [Google Scholar]
- Bruce, C. Cosmetic Prosthesis and Methods for Making the Same. U.S. Patent Application 10/539,433, 3 August 2006. [Google Scholar]
- Geethanjali, P. Myoelectric control of prosthetic hands: State-of-the-art review. Med. Devices (Auckl. NZ) 2016, 9, 247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sears, H.H.; Iversen, E.K.; Hays, K.B.; Dyck, A.D. Method and Apparatus for Controlling an Externally Powered Prosthesis. U.S. Patent 5,888,213, 30 March 1999. [Google Scholar]
- Reiter, R. Eine neue elektrokunsthand. Grenzgebiete der Medizin 1948, 1, 133–135. [Google Scholar] [PubMed]
- Roche, A.D.; Rehbaum, H.; Farina, D.; Aszmann, O.C. Prosthetic myoelectric control strategies: A clinical perspective. Curr. Surg. Rep. 2014, 2, 44. [Google Scholar] [CrossRef]
- Scheme, E.; Englehart, K. Electromyogram pattern recognition for control of powered upper-limb prostheses: State of the art and challenges for clinical use. J. Rehabil. Res. Dev. 2011, 48, 643–659. [Google Scholar] [CrossRef]
- Parajuli, N.; Sreenivasan, N.; Bifulco, P.; Cesarelli, M.; Savino, S.; Niola, V.; Esposito, D.; Hamilton, T.J.; Naik, G.R.; Gunawardana, U.; et al. Real-time EMG based pattern recognition control for hand prostheses: A review on existing methods, challenges and future implementation. Sensors 2019, 19, 4596. [Google Scholar] [CrossRef] [Green Version]
- Smail, L.C.; Neal, C.; Wilkins, C.; Packham, T.L. Comfort and function remain key factors in upper limb prosthetic abandonment: Findings of a scoping review. Disabil. Rehabil. Assist. Technol. 2020, 1–10. [Google Scholar] [CrossRef]
- Biddiss, E.; Chau, T. Upper-limb prosthetics: Critical factors in device abandonment. Am. J. Phys. Med. Rehabil. 2007, 86, 977–987. [Google Scholar] [CrossRef] [Green Version]
- Cipriani, C.; Zaccone, F.; Micera, S.; Carrozza, M.C. On the shared control of an EMG-controlled prosthetic hand: Analysis of user–prosthesis interaction. IEEE Trans. Robot. 2008, 24, 170–184. [Google Scholar] [CrossRef]
- Kuiken, T.A.; Childress, D.S.; Rymer, W.Z. The hyper-reinnervation of rat skeletal muscle. Brain Res. 1995, 676, 113–123. [Google Scholar] [CrossRef]
- Chi, A.; Smith, S.; Womack, I.; Armiger, R. The evolution of man and machine—A review of current surgical techniques and cutting technologies after upper extremity amputation. Curr. Trauma Rep. 2018, 4, 339–347. [Google Scholar] [CrossRef]
- Myers, H.; Lu, D.; Gray, S.J.; Bruscino-Raiola, F. Targeted muscle reinnervation to improve electromyography signals for advanced myoelectric prosthetic limbs: A series of seven patients. ANZ J. Surg. 2020, 90, 591–596. [Google Scholar] [CrossRef]
- Kuiken, T.A.; Dumanian, G.A.; Lipschutz, R.D.; Miller, L.A.; Stubblefield, K. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet. Orthot. Int. 2004, 28, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Kuiken, T. Targeted reinnervation for improved prosthetic function. Phys. Med. Rehabil. Clin. 2006, 17, 1–13. [Google Scholar] [CrossRef]
- Oh, C.; Carlsen, B.T. New innovations in targeted muscle reinnervation: A critical analysis review. JBJS Rev. 2019, 7, e3. [Google Scholar] [CrossRef] [PubMed]
- Kuiken, T.A.; Miller, L.A.; Lipschutz, R.D.; Lock, B.A.; Stubblefield, K.; Marasco, P.D.; Zhou, P.; Dumanian, G.A. Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: A case study. Lancet 2007, 369, 371–380. [Google Scholar] [CrossRef]
- Kuiken, T.A.; Barlow, A.K.; Hargrove, L.; Dumanian, G.A. Targeted muscle reinnervation for the upper and lower extremity. Tech. Orthop. (Rockv. MD) 2017, 32, 109. [Google Scholar] [CrossRef]
- Bueno Jr, R.A.; French, B.; Cooney, D.; Neumeister, M.W. Targeted muscle reinnervation of a muscle-free flap for improved prosthetic control in a shoulder amputee: Case report. J. Hand Surg. 2011, 36, 890–893. [Google Scholar] [CrossRef]
- Souza, J.M.; Cheesborough, J.E.; Ko, J.H.; Cho, M.S.; Kuiken, T.A.; Dumanian, G.A. Targeted muscle reinnervation: A novel approach to postamputation neuroma pain. Clin. Orthop. Relat. Res. 2014, 472, 2984–2990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mastinu, E.; Brånemark, R.; Aszmann, O.; Ortiz-Catalan, M. Myoelectric signals and pattern recognition from implanted electrodes in two TMR subjects with an osseointegrated communication interface. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 5174–5177. [Google Scholar]
- Hebert, J.S.; Chan, K.M.; Dawson, M.R. Cutaneous sensory outcomes from three transhumeral targeted reinnervation cases. Prosthet. Orthot. Int. 2016, 40, 303–310. [Google Scholar] [CrossRef]
- Roubaud, M.S. Targeted Muscle Reinnervation in the Oncologic Population: A Literature Review and Current Practice. Curr. Surg. Rep. 2020, 8, 1–7. [Google Scholar] [CrossRef]
- Kuiken, T.; Dumanian, G.; Lipschutz, R.; Miller, L.; Stubblefield, K. Targeted muscle reinnervation for improved myoelectric prosthesis control. In Proceedings of the 2nd International IEEE EMBS Conference on Neural Engineering, Arlington, VA, USA, 16–19 March 2005; pp. 396–399. [Google Scholar]
- Miller, L.A.; Lipschutz, R.D.; Stubblefield, K.A.; Lock, B.A.; Huang, H.; Williams, T.W., III; Weir, R.F.; Kuiken, T.A. Control of a six degree of freedom prosthetic arm after targeted muscle reinnervation surgery. Arch. Phys. Med. Rehabil. 2008, 89, 2057–2065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Shaughnessy, K.D.; Dumanian, G.A.; Lipschutz, R.D.; Miller, L.A.; Stubblefield, K.; Kuiken, T.A. Targeted reinnervation to improve prosthesis control in transhumeral amputees: A report of three cases. JBJS 2008, 90, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.A.; Stubblefield, K.A.; Lipschutz, R.D.; Lock, B.A.; Kuiken, T.A. Improved myoelectric prosthesis control using targeted reinnervation surgery: A case series. IEEE Trans. Neural Syst. Rehabil. Eng. 2008, 16, 46–50. [Google Scholar] [CrossRef] [Green Version]
- Kuiken, T.A.; Li, G.; Lock, B.A.; Lipschutz, R.D.; Miller, L.A.; Stubblefield, K.A.; Englehart, K.B. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA 2009, 301, 619–628. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.H.; Hargrove, L.J. Intramuscular EMG after targeted muscle reinnervation for pattern recognition control of myoelectric prostheses. In Proceedings of the 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), San Diego, CA, USA, 6–8 November 2013; pp. 1155–1158. [Google Scholar]
- Huang, H.; Zhou, P.; Li, G.; Kuiken, T. Spatial filtering improves EMG classification accuracy following targeted muscle reinnervation. Ann. Biomed. Eng. 2009, 37, 1849–1857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, P.; Lowery, M.M.; Englehart, K.B.; Huang, H.; Li, G.; Hargrove, L.; Dewald, J.P.; Kuiken, T.A. Decoding a new neural–machine interface for control of artificial limbs. J. Neurophysiol. 2007, 98, 2974–2982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batzianoulis, I.; Simon, A.; Hargrove, L.; Billard, A. Reach-to-grasp motions: Towards a dynamic classification approach for upper-limp prosthesis. In Proceedings of the 2019 9th International IEEE/EMBS Conference on Neural Engineering, San Francisco, CA, USA, 20–23 March 2019; pp. 287–290. [Google Scholar]
- Batzianoulis, I.; Krausz, N.E.; Simon, A.M.; Hargrove, L.; Billard, A. Decoding the grasping intention from electromyography during reaching motions. J. Neuroeng. Rehabil. 2018, 15, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Zhang, D.; Wang, Y.; Feng, J.; Xu, W. Two ways to improve myoelectric control for a transhumeral amputee after targeted muscle reinnervation: A case study. J. Neuroeng. Rehabil. 2018, 15, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hargrove, L.; Miller, L.; Turner, K.; Kuiken, T. Control within a virtual environment is correlated to functional outcomes when using a physical prosthesis. J. Neuroeng. Rehabil. 2018, 15, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tkach, D.C.; Young, A.J.; Smith, L.H.; Rouse, E.J.; Hargrove, L.J. Real-time and offline performance of pattern recognition myoelectric control using a generic electrode grid with targeted muscle reinnervation patients. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 727–734. [Google Scholar] [CrossRef]
- Hargrove, L.J.; Lock, B.A.; Simon, A.M. Pattern recognition control outperforms conventional myoelectric control in upper limb patients with targeted muscle reinnervation. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 1599–1602. [Google Scholar]
- Wurth, S.M.; Hargrove, L.J. A real-time comparison between direct control, sequential pattern recognition control and simultaneous pattern recognition control using a Fitts’ law style assessment procedure. J. Neuroeng. Rehabil. 2014, 11, 91. [Google Scholar] [CrossRef] [Green Version]
- Hargrove, L.J.; Miller, L.A.; Turner, K.; Kuiken, T.A. Myoelectric pattern recognition outperforms direct control for transhumeral amputees with targeted muscle reinnervation: A randomized clinical trial. Sci. Rep. 2017, 7, 1–9. [Google Scholar]
- Young, A.J.; Smith, L.H.; Rouse, E.J.; Hargrove, L.J. A comparison of the real-time controllability of pattern recognition to conventional myoelectric control for discrete and simultaneous movements. J. Neuroeng. Rehabil. 2014, 11, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Englehart, K.; Hudgins, B. A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 2003, 50, 848–854. [Google Scholar] [CrossRef]
- Ortiz-Catalan, M.; Håkansson, B.; Brånemark, R. Real-time and simultaneous control of artificial limbs based on pattern recognition algorithms. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 756–764. [Google Scholar] [CrossRef]
- Tkach, D.; Huang, H.; Kuiken, T.A. Study of stability of time-domain features for electromyographic pattern recognition. J. Neuroeng. Rehabil. 2010, 7, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellingegni, A.D.; Gruppioni, E.; Colazzo, G.; Davalli, A.; Sacchetti, R.; Guglielmelli, E.; Zollo, L. NLR, MLP, SVM, and LDA: A comparative analysis on EMG data from people with trans-radial amputation. J. Neuroeng. Rehabil. 2017, 14, 82. [Google Scholar] [CrossRef]
- Leone, F.; Gentile, C.; Ciancio, A.L.; Gruppioni, E.; Davalli, A.; Sacchetti, R.; Guglielmelli, E.; Zollo, L. Simultaneous sEMG classification of wrist/hand gestures and forces. Front. Neurorobot. 2019, 13, 42. [Google Scholar] [CrossRef]
- Hijjawi, J.B.; Kuiken, T.A.; Lipschutz, R.D.; Miller, L.A.; Stubblefield, K.A.; Dumanian, G.A. Improved myoelectric prosthesis control accomplished using multiple nerve transfers. Plastic Reconstr. Surg. 2006, 118, 1573–1578. [Google Scholar] [CrossRef]
- Cheesborough, J.E.; Smith, L.H.; Kuiken, T.A.; Dumanian, G.A. Targeted muscle reinnervation and advanced prosthetic arms. In Seminars in Plastic Surgery; Thieme Medical Publishers: New York, NY, USA, 2015; Volume 29, pp. 062–072. [Google Scholar]
- Mastinu, E. Embedded Controller for Artificial Limbs. Ph.D. Thesis, Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden, 2017. [Google Scholar]
- Huang, H.; Zhou, P.; Li, G.; Kuiken, T.A. An analysis of EMG electrode configuration for targeted muscle reinnervation based neural machine interface. IEEE Trans. Neural Syst. Rehabil. Eng. 2008, 16, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Kuiken, T.A.; Miller, L.A.; Turner, K.; Hargrove, L.J. A comparison of pattern recognition control and direct control of a multiple degree-of-freedom transradial prosthesis. IEEE J. Transl. Eng. Health Med. 2016, 4, 1–8. [Google Scholar] [CrossRef]
- Simon, A.M.; Hargrove, L.J.; Lock, B.A.; Kuiken, T.A. The target achievement control test: Evaluating real-time myoelectric pattern recognition control of a multifunctional upper-limb prosthesis. J. Rehabil. Res. Dev. 2011, 48, 619. [Google Scholar] [CrossRef]
- Young, A.J.; Smith, L.H.; Rouse, E.J.; Hargrove, L.J. A new hierarchical approach for simultaneous control of multi-joint powered prostheses. In Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June 2012; pp. 514–520. [Google Scholar]
- Mathiowetz, V.; Weber, K.; Kashman, N.; Volland, G. Adult norms for the nine hole peg test of finger dexterity. Occup. Ther. J. Res. 1985, 5, 24–38. [Google Scholar] [CrossRef]
- Wolf, S.L.; Catlin, P.A.; Ellis, M.; Archer, A.L.; Morgan, B.; Piacentino, A. Assessing Wolf motor function test as outcome measure for research in patients after stroke. Stroke 2001, 32, 1635–1639. [Google Scholar] [CrossRef] [Green Version]
- Assessment of Motor and Process Skills. 2019. Available online: https://www.sralab.org/rehabilitation-measures/assessment-motor-and-process-skills# (accessed on 26 April 2019).
- Yozbatiran, N.; Der-Yeghiaian, L.; Cramer, S.C. A standardized approach to performing the action research arm test. Neurorehabilit. Neural Repair 2008, 22, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Hill, W.; Kyberd, P.; Hermansson, L.N.; Hubbard, S.; Stavdahl, Ø.; Swanson, S. Upper limb prosthetic outcome measures (ULPOM): A working group and their findings. JPO J. Prosthet. Orthot. 2009, 21, P69–P82. [Google Scholar] [CrossRef]
- Light, C.M.; Chappell, P.H.; Kyberd, P.J. Establishing a standardized clinical assessment tool of pathologic and prosthetic hand function: Normative data, reliability, and validity. Arch. Phys. Med. Rehabil. 2002, 83, 776–783. [Google Scholar] [CrossRef] [Green Version]
- Jebsen, R.H. An objective and standardized test of hand function. Arch. Phys. Med. Rehabil. 1969, 50, 311–319. [Google Scholar] [PubMed]
- Lindner, H.; Langius-Eklof, A.; Hermansson, L. Test-retest reliability and rater agreements of Assessment of Capacity for Myoelectric Control version 2.0. J. Rehabil. Res. Dev. 2014, 51, 635–644. [Google Scholar] [CrossRef]
- Hermansson, L.M.; Bodin, L.; Eliasson, A.C. Intra-and inter-rater reliability of the assessment of capacity for myoelectric control. J. Rehabil. Med. 2006, 38, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Lenzi, T.; Lipsey, J.; Sensinger, J.W. The RIC Arm—A small anthropomorphic transhumeral prosthesis. IEEE/ASME Trans. Mechatronics 2016, 21, 2660–2671. [Google Scholar] [CrossRef]
- Simon, A.M.; Hargrove, L.J.; Lock, B.A.; Kuiken, T.A. A decision-based velocity ramp for minimizing the effect of misclassifications during real-time pattern recognition control. IEEE Trans. Biomed. Eng. 2011, 58, 2360–2368. [Google Scholar] [CrossRef] [Green Version]
- Young, A.J.; Smith, L.H.; Rouse, E.J.; Hargrove, L.J. Classification of simultaneous movements using surface EMG pattern recognition. IEEE Trans. Biomed. Eng. 2012, 60, 1250–1258. [Google Scholar] [CrossRef] [Green Version]
- Lock, B.; Englehart, K.; Hudgins, B. Real-time myoelectric control in a virtual environment to relate usability vs. accuracy. In Proceedings of the 2005 MyoElectric Controls/Powered Prosthetics Symposium, Fredericton, NB, Canada, 17–19 August 2005; pp. 122–127. [Google Scholar]
- Li, G.; Schultz, A.E.; Kuiken, T.A. Quantifying pattern recognition—Based myoelectric control of multifunctional transradial prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 185–192. [Google Scholar]
- Hargrove, L.J.; Scheme, E.J.; Englehart, K.B.; Hudgins, B.S. Multiple binary classifications via linear discriminant analysis for improved controllability of a powered prosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 49–57. [Google Scholar] [CrossRef] [PubMed]
Test Used | Percentage of Enrolled Patients (%) | N° of Articles |
---|---|---|
Qualitative/subjective evaluation (questionnaire) | 20 | 7 |
Box and Block | 50 | 9 |
Clothespin Relocation | 49 | 8 |
Wolf Motor Functions—WMFT | 1 | 1 |
Assessment of Motor and Process Skills—AMPS | 14 | 3 |
Cubbies | 1 | 1 |
Cups | 1 | 1 |
Target Achievement Control—TAC | 19 | 2 |
Southampton Hand Assessment Procedure—SHAP | 25 | 2 |
Accuracy offline | 35 | 8 |
Classification Error rate | 35 | 5 |
Assessment of Capacity for Myoelectric Control—ACMC | 25 | 2 |
Real Time Virtual Test | 14 | 3 |
Action Research Arm Test—ARAT | 1 | 1 |
Jebsen-Taylor Test of Hand Function—JTHFT | 13 | 1 |
Block stacking | 5 | 1 |
Fitts’ Target Acquisition Task—FTAT | 1 | 1 |
Performance Evaluation Method | Metric Indicators | DC | PR | Study | |
---|---|---|---|---|---|
BBT | Number of 1-inch blocks moved over a barrier in two min (average value on 4 TMR patients) | 10.7 ± 4.3 | 15 ± 3 | [44] | |
Number of 1-inch blocks moved over a barrier in two min (average value on 8 TMR patients) | 15.6 ± 2.7 | 13.4 ± 2.6 | [46] | ||
CRT | Time (s) to move three clothespins (average value on 4 TMR patients) | 60 ± 15 | 45 ± 11 | [44] | |
Time (s) to move three clothespins (average value on 8 TMR patients) | 137 ± 60.2 | 90.2 ± 39.6 | [46] | ||
ACMC | Test score (average value on 8 TMR patients) | 44.4 ± 3.4 | 47.3 ± 3.9 | [46] | |
SHAP | Index of function (average value on 8 TMR patients) | 18 ± 5 | 31 ± 3 | [46] | |
TAC | Completion Time (s) 1 DoF (average value on 4 TMR patients) | 2.651.66 | 1.4 ± 0.3 (Seq) | 2.03 ± 0.83 (Sim) | [47] |
Completion Time (s) 2 DoF (average value on 4 TMR patients) | 3.55 ± 1.66 | 3.6 ± 0.42 (Seq) | 1.93 ± 0.82 (Sim) | ||
Completion rate (%) 1 DoF (average value on 4 TMR patients | 86.25 | 100 (Seq) | 93.75 (Sim) | ||
Completion rate (%) 2 DoF (average value on 4 TMR patients) | 81.25 | 92.5 (Seq) | 98.75 (Sim) | ||
Length error (%) 1 DoF (average value on 4 TMR patients | 97.4 ± 81 | 13.96 ± 4.65 (Seq) | 32 ± 29.52 (Sim) | ||
Length error (%) 2 DoF (average value on 4 TMR patients) | 86.65 ± 52.77 | 67.88 ± 11.8 (Seq) | 21.88 ± 25.08 (Sim) | ||
FTAT | Throughput (bit/s) (1 DoF) | 2.64 ± 0.24 | 3.67 ± 0.23 (Seq) | 2.11 ± 0.18 (Sim) | [45] |
Throughput (bit/s) (2 DoF) | 1.24 ± 0.04 | 1.32 ± 0.03 (Seq) | 1.63 ± 0.05 (Sim) | ||
Path efficiency (%) (1 DoF) | 90.1 ± 0.23 | 97.00 ± 0.96 (Seq) | 96.3 ± 1.12 (Sim) | ||
Path efficiency (%) (2 DoF) | 71.3 ± 0.80 | 71.60 ± 0.76 (Seq) | 87.7 ± 0.7 (Sim) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mereu, F.; Leone, F.; Gentile, C.; Cordella, F.; Gruppioni, E.; Zollo, L. Control Strategies and Performance Assessment of Upper-Limb TMR Prostheses: A Review. Sensors 2021, 21, 1953. https://doi.org/10.3390/s21061953
Mereu F, Leone F, Gentile C, Cordella F, Gruppioni E, Zollo L. Control Strategies and Performance Assessment of Upper-Limb TMR Prostheses: A Review. Sensors. 2021; 21(6):1953. https://doi.org/10.3390/s21061953
Chicago/Turabian StyleMereu, Federico, Francesca Leone, Cosimo Gentile, Francesca Cordella, Emanuele Gruppioni, and Loredana Zollo. 2021. "Control Strategies and Performance Assessment of Upper-Limb TMR Prostheses: A Review" Sensors 21, no. 6: 1953. https://doi.org/10.3390/s21061953