Design and Experimentation of a Self-Sensing Actuator for Active Vibration Isolation System with Adjustable Anti-Resonance Frequency Controller
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description and Mathematical Modeling of the System
2.1.1. Design of the Self-Sensing Active Vibration Isolation System
2.1.2. Design of Self-Sensing PZT Actuator
2.1.3. Mathematical Modeling of the Self-Sensing Active Vibration Isolation System
2.1.4. Characteristic Analysis
2.2. Design of the Self-Sensing Controller
2.2.1. Design of the Adjustable Anti-Resonance Frequency Controller
2.2.2. Design of Self-Sensing Transfer Function
2.2.3. Parameters Setting of the Self-Sensing Controller
3. Results and Discussion
3.1. Experiment Verification
3.1.1. Experiment Verification of Frequency Domain
3.1.2. Experiment Verification of Self-Sensing Active Vibration Isolation System
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, C.; Liu, Z.; Zhang, Y.; Chen, L.P.; Xie, S.L. Actuator Backlash Compensation and Accurate Parameter Estimation for Active Vibration Isolation System. IEEE Trans. Ind. Electron. 2016, 63, 1643–1654. [Google Scholar] [CrossRef]
- Kim, M.H.; Kim, H.Y.; Kim, H.C.; Ahn, D. Design and control of a 6-DOF active vibration isolation system using a Halbach magnet array. IEEE Trans. Mechatron. 2016, 21, 2185–2196. [Google Scholar] [CrossRef]
- Csencsics, E.; Thier, M.; Hainisch, R.; Schitter, G. System and control design of a voice coil actuated mechanically decoupling two-body vibration isolation system. IEEE Trans. Mechatron. 2018, 23, 321–330. [Google Scholar] [CrossRef]
- Alujevic, N.; Cakmak, D.; Wolf, H. Passive and active vibration isolation systems using inerter. J. Sound Vib. 2018, 418, 163–183. [Google Scholar] [CrossRef]
- Parashar, P.; Akbar, C.; Rawat, T.S. Intelligent photolithography corrections using dimensionality reductions. IEEE Photonics J. 2019, 11, 215. [Google Scholar] [CrossRef]
- He, C.L.; Zong, W.J.; Zhang, J.J. Influencing factors and theoretical modeling methods of surface roughness in turning process: State-of-the-art. Int. J. Mach. Tools Manuf. 2018, 129, 15–26. [Google Scholar] [CrossRef]
- Akutsu, T.; Arellano, F.E.P.; Shoda, A. Compact integrated optical sensors and electromagnetic actuators for vibration isolation systems in the gravitational-wave detector KAGRA. Rev. Sci. Instrum. 2020, 91, 5001. [Google Scholar] [CrossRef]
- Shin, Y.H.; Moon, S.J.; Kim, Y.J. Vibration Control of Scanning Electron Microscopes with Experimental Approaches for Performance Enhancement. Sensors 2020, 20, 2277. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhao, J.L.; Wang, M. High-Static-Low-Dynamic Stiffness Isolator with Tunable Electromagnetic Mechanism. IEEE Trans. Mechatron. 2020, 25, 316–326. [Google Scholar] [CrossRef]
- Liu, X.T.; Zhao, Q.; Zhang, Z.Y.; Zhou, X.B. An experiment investigation on the effect of Coulomb friction on the displacement transmissibility of a quasi-zero stiffness isolator. J. Mech. Sci. Technol. 2019, 33, 121–127. [Google Scholar] [CrossRef]
- Zhou, J.X.; Xiao, Q.Y.; Xu, D.L.; Qu, H.J.; Li, Y.L. A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform. J. Sound Vib. 2017, 394, 59–74. [Google Scholar] [CrossRef]
- Tao, Y.; Jiang, W.; Han, B. A Novel Piecewise Frequency Control Strategy Based on Fractional-Order Filter for Coordinating Vibration Isolation and Positioning of Supporting System. Sensors 2020, 20, 5307. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, T.; Takasaki, M.; Kishita, D.; Hirakawa, K. Vibration isolation system combining zero-power magnetic suspension with springs. Control Eng. Pract. 2007, 15, 187–196. [Google Scholar] [CrossRef]
- Xu, D.L.; Yu, Q.P.; Zhou, J.X.; Bishop, S.R. Theoretical and Experimental Analyses of a Nonlinear Magnetic Vibration Isolator with Quasi-zero-stiffness Characteristic. J. Sound Vib. 2013, 332, 3377–3389. [Google Scholar] [CrossRef]
- Zhou, N.; Liu, K. A tunable high-static–low-dynamic stiffness vibration isolator. J. Sound Vib. 2010, 329, 1254–1273. [Google Scholar] [CrossRef]
- Shakhnazarov, M.V.A.; Sofiyanchuk, D.V.; Strelov, V.I. Dynamic Blocks and Efficacy Bounds of Active Vibration Isolation Systems. J. Comput. Syst. Sci. Int. 2019, 58, 244–251. [Google Scholar] [CrossRef]
- Freyer, B.H.; Theron, N.J.; Heyns, P.S. Self-sensing active control of emulated tangential tool vibration hardware-in-the-loop. Control Eng. Pract. 2021, 109, 4729. [Google Scholar] [CrossRef]
- Chen, X.; Li, W. A Monolithic Self-Sensing Precision Stage: Design, Modeling, Calibration, and Hysteresis Compensation. IEEE/ASME Trans. Mechatron. 2015, 20, 812–823. [Google Scholar] [CrossRef]
- Yan, B.; Wang, K.; Kang, C.X. Self-Sensing Electromagnetic Transducer for Vibration Control of Space Antenna Reflector. IEEE/ASME Trans. Mechatron. 2017, 22, 1944–1951. [Google Scholar] [CrossRef]
- Dong, Y.; Li, Y.; Li, X. Active control of dynamic behaviors of graded graphene reinforced cylindrical shells with piezoelectric actuator/sensor layers. Appl. Math. Model. 2020, 82, 252–270. [Google Scholar] [CrossRef]
- Ju, B.; Guo, Z.; Liu, Y.; Qian, G.; Xu, L.; Li, G. Self-Sensing Vibration Suppression of Piezoelectric Cantilever Beam Based on Improved Mirror Circuit. IEEE Access 2019, 7, 148381–148392. [Google Scholar] [CrossRef]
- Pan, G.Y.; Wang, S.S. Study on the Vibration Control Based on the Piezoelectric Self-Sensing Vibration Damper. Appl. Mech. Mater. 2015, 752, 739–744. [Google Scholar] [CrossRef]
- Qiu, J.; Haraguchi, M. Vibration Control of a Plate using a Self-sensing Piezoelectric Actuator and an Adaptive Control Approach. J. Intell. Mater. Syst. Struct. 2006, 17, 661–669. [Google Scholar] [CrossRef]
- Pelletier, A.; Micheau, P.; Berry, A. Harmonic active vibration control using piezoelectric self-sensing actuation with complete digital compensation. J. Intell. Mater. Syst. Struct. 2018, 29, 510–1519. [Google Scholar] [CrossRef]
- Yan, T.H.; Chen, X.D.; Dou, W.F. Feedback Control of Disk Vibration and Flutter by Distributed Self-Sensing Piezoceramic Actuators. Mech. Based Des. Struct. Mach. 2008, 36, 283–305. [Google Scholar] [CrossRef]
- Bahrani, A.M.; Cree, A. Micro-scale damage sensing in self-sensing nanocomposite material based CNTs. Compos. Part B Eng. 2021, 205, 8479. [Google Scholar]
- Brugo, T.M.; Maccaferri, E.; Cocchi, D. Self-sensing hybrid composite laminate by piezoelectric nanofibers interleaving. Compos. Part B Eng. 2021, 212, 8673. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Mass of the payload, m1 (kg) | 0.695 |
Sum mass of the VCM, the PZT, and connecting plate, m2 (kg) | 0.614 |
Stiffness of the passive vibration isolation system, k (N/m) | 480 |
Stiffness of PZT actuator, kp (N/m) | 5000 |
Thrust coefficient of the VCM, ki (N/A) | 31.8 |
Thrust coefficient of the PZT, ku (N/V) | 25.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Li, S.; Liu, J.; Zhao, B. Design and Experimentation of a Self-Sensing Actuator for Active Vibration Isolation System with Adjustable Anti-Resonance Frequency Controller. Sensors 2021, 21, 1941. https://doi.org/10.3390/s21061941
Fu Y, Li S, Liu J, Zhao B. Design and Experimentation of a Self-Sensing Actuator for Active Vibration Isolation System with Adjustable Anti-Resonance Frequency Controller. Sensors. 2021; 21(6):1941. https://doi.org/10.3390/s21061941
Chicago/Turabian StyleFu, Yuan, Shusen Li, Jiuqing Liu, and Bo Zhao. 2021. "Design and Experimentation of a Self-Sensing Actuator for Active Vibration Isolation System with Adjustable Anti-Resonance Frequency Controller" Sensors 21, no. 6: 1941. https://doi.org/10.3390/s21061941
APA StyleFu, Y., Li, S., Liu, J., & Zhao, B. (2021). Design and Experimentation of a Self-Sensing Actuator for Active Vibration Isolation System with Adjustable Anti-Resonance Frequency Controller. Sensors, 21(6), 1941. https://doi.org/10.3390/s21061941