Chip-Scale Ultra-Low Field Atomic Magnetometer Based on Coherent Population Trapping
Abstract
:1. Introduction
2. Theory
3. Experimental Details
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Budker, D.; Romalis, M. Optical magnetometry. Nat. Phys. 2007, 3, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Kominis, I.K.; Kornack, T.W.; Allred, J.C.; Romalis, M.V. A subfemtotesla multichannel atomic magnetometer. Nature 2003, 422, 596–599. [Google Scholar] [CrossRef] [PubMed]
- Bougas, L.; Langenegger, L.D.; Mora, C.A.; Zeltner, M.; Stark, W.J.; Wickenbrock, A.; Blanchard, J.W.; Budker, D. Nondestructive in-line sub-picomolar detection of magnetic nanoparticles in flowing complex fluids. Sci. Rep. 2018, 8, 3491. [Google Scholar] [CrossRef] [Green Version]
- Soheilian, A.; Ranjbaran, M.; Tehranchi, M.M. Position and Direction Tracking of a Magnetic Object Based on an Mx-Atomic Magnetometer. Sci. Rep. 2020, 10, 1294. [Google Scholar] [CrossRef] [PubMed]
- Korth, H.; Strohbehn, K.; Tejada, F.; Andreou, A.G.; Kitching, J.; Knappe, S.; Lehtonen, S.J.; London, S.M.; Kafel, M. Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb. J. Geophys. Res. Space Phys. 2016, 121, 7870–7880. [Google Scholar] [CrossRef]
- Kim, K.; Begus, S.; Xia, H.; Lee, S.-K.; Jazbinsek, V.; Trontelj, Z.; Romalis, M.V. Multi-channel atomic magnetometer for magnetoencephalography: A configuration study. Neuroimage 2014, 89, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Jensen, K.; Skarsfeldt, M.A.; Stærkind, H.; Arnbak, J.; Balabas, M.V.; Olesen, S.-P.; Bentzen, B.H.; Polzik, E.S. Magnetocardiography on an isolated animal heart with a room-temperature optically pumped magnetometer. Sci. Rep. 2018, 8, 16218. [Google Scholar] [CrossRef] [Green Version]
- Tierney, T.M.; Holmes, N.; Mellor, S.; López, J.D.; Roberts, G.; Hill, R.M.; Boto, E.; Leggett, J.; Shah, V.; Brookes, M.J.; et al. Optically pumped magnetometers: From quantum origins to multi-channel magnetoencephalography. NeuroImage 2019, 199, 598–608. [Google Scholar] [CrossRef]
- Schwindt, P.D.D.; Knappe, S.; Shah, V.; Hollberg, L.; Kitching, J. Chip-scale atomic magnetometer. Appl. Phys. Lett. 2004, 85, 6409–6411. [Google Scholar] [CrossRef]
- Schwindt, P.D.D.; Lindseth, B.; Knappe, S.; Shah, V.; Kitching, J. Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique. Appl. Phys. Lett. 2007, 90, 081102. [Google Scholar] [CrossRef] [Green Version]
- Sander, T.H.; Preusser, J.; Mhaskar, R.; Kitching, J.; Trahms, L.; Knappe, S. Magnetoencephalography with a chip-scale atomic magnetometer. Biomed. Opt. Express 2012, 3, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Schultz, G.; Mhaskar, R.; Prouty, M.; Miller, J. Integration of micro-fabricated atomic magnetometers on military systems. Proc. SPIE 2016, 9823, 982318. [Google Scholar]
- Alem, O.; Mhaskar, R.; Jiménez-Martínez, R.; Sheng, D.; LeBlanc, J.; Trahms, L.; Sander, T.; Kitching, J.; Knappe, S. Magnetic field imaging with microfabricated optically-pumped magnetometers. Opt. Express 2017, 25, 7849–7858. [Google Scholar] [CrossRef] [PubMed]
- Boto, E.; Holmes, N.; Leggett, J.; Roberts, G.; Shah, V.; Meyer, S.S.; Muñoz, L.D.; Mullinger, K.J.; Tierney, T.M.; Bestmann, S.; et al. Moving magnetoencephalography towards real-world applications with a wearable system. Nature 2018, 555, 657–661. [Google Scholar] [CrossRef] [PubMed]
- Kitching, J.; Donley, E.A.; Knappe, S.; Hummon, M.; Dellis, A.T.; Sherman, J.; Srinivasan, K.; Aksyuk, V.A.; Li, Q.; Westly, D.; et al. NIST on a Chip: Realizing SI units with microfabricated alkali vapour cells. J. Phys. Conf. Ser. 2016, 723, 012056. [Google Scholar] [CrossRef] [Green Version]
- Arimondo, E. Coherent population trapping in laser spectroscopy. Prog. Opt. 1996, 35, 257–354. [Google Scholar]
- Scully, M.O.; Fleischhauer, M. High-sensitivity magne- tometer based on index-enhanced media. Phys. Rev. Lett. 1992, 69, 1360–1363. [Google Scholar] [CrossRef]
- Jimenez-Martinez, R.; Griffith, W.C.; Wang, Y.-J.; Knappe, S.; Kitching, J.; Smith, K.; Prouty, M.D. Sensitivity Comparison of Mx and Frequency-Modulated Bell–Bloom Cs Magnetometers in a Microfabricated Cell. IEEE Trans. Instrum. Meas. 2010, 59, 372–378. [Google Scholar] [CrossRef]
- Hu, Y.; Feng, Y.Y.; Xu, C.; Xue, H.B.; Sun, L. Loop-locked coherent population trapping magnetometer based on a fiber electro-optic modulator. Appl. Opt. 2014, 53, 2158–2162. [Google Scholar] [CrossRef]
- Shkel, A.M. Precision navigation and timing enabled by microtechnology: Are we there yet? Proc. SPIE 2011, 8031, 803118. [Google Scholar]
- Stähler, M.; Knappe, S.; Affolderbach, C.; Kemp, W.; Wynands, R. Picotesla magnetometry with coherent dark states. Europhys. Lett. 2001, 54, 323–328. [Google Scholar] [CrossRef]
- Tripathi, R.; Pati, G.S. Magnetic Field Measurement Using Peak-Locked Zeeman Coherent Population Trapping Resonance in Rubidium Vapor. IEEE Photon. J. 2019, 11, 6101410. [Google Scholar] [CrossRef]
- Maeda, R.; Goka, S. High sensitively coherent population trapping magnetometer with optically pumped degenerate atoms. In Proceedings of the Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), Besancon, France, 9–13 July 2017; pp. 300–301. [Google Scholar]
- Warren, Z.; Shahriar, M.S.; Tripathi, R.; Pati, G.S. Experimental and theoretical comparison of different optical excitation schemes for a compact coherent population trapping Rb vapor clock. Metrologia 2017, 54, 418–431. [Google Scholar] [CrossRef]
- Vanier, J. Atomic clocks based on coherent population trapping: A review. Appl. Phys. B 2005, 81, 421–442. [Google Scholar] [CrossRef]
- Motomura, K.; Mitsunaga, M. High-resolution spectroscopy of hyperfine Zeeman components of the sodium D1 line by coherent population trapping. J. Opt. Soc. Am. B 2002, 19, 2456–2460. [Google Scholar] [CrossRef]
- Liu, X.; Mérolla, J.M.; Guérandel, S.; Gorecki, C.; de Clercq, E.; Boudot, R. Coherent-population-trapping resonances in buffer-gas-filled Cs-vapor cells with push-pull optical pumping. Phys. Rev. A 2013, 87, 013416. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.-G.; Park, J.; Kim, T.H.; Kim, H.Y.; Park, S.E.; Lee, S.-B.; Heo, M.-S.; Kwon, T.Y. Magnetic shield integration for a chip-scale atomic clock. Appl. Phys. Express 2020, 13, 106504. [Google Scholar] [CrossRef]
- Steck, D.A. Cesium D Line Data, revision 2.2.1. Available online: http://steck.us/alkalidata (accessed on 21 November 2019).
- Woetzela, S.; Schultze, V.; IJsselsteijn, R.; Schulz, T.; Anders, S.; Stolz, R.; Meyer, H.-G. Microfabricated atomic vapor cell arrays for magnetic field measurements. Rev. Sci. Instrum. 2011, 82, 033111. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, H.-G.; Park, S.E.; Lee, S.-B.; Heo, M.-S.; Park, J.; Kim, T.H.; Kim, H.Y.; Kwon, T.Y. Chip-Scale Ultra-Low Field Atomic Magnetometer Based on Coherent Population Trapping. Sensors 2021, 21, 1517. https://doi.org/10.3390/s21041517
Hong H-G, Park SE, Lee S-B, Heo M-S, Park J, Kim TH, Kim HY, Kwon TY. Chip-Scale Ultra-Low Field Atomic Magnetometer Based on Coherent Population Trapping. Sensors. 2021; 21(4):1517. https://doi.org/10.3390/s21041517
Chicago/Turabian StyleHong, Hyun-Gue, Sang Eon Park, Sang-Bum Lee, Myoung-Sun Heo, Jongcheol Park, Tae Hyun Kim, Hee Yeon Kim, and Taeg Yong Kwon. 2021. "Chip-Scale Ultra-Low Field Atomic Magnetometer Based on Coherent Population Trapping" Sensors 21, no. 4: 1517. https://doi.org/10.3390/s21041517
APA StyleHong, H.-G., Park, S. E., Lee, S.-B., Heo, M.-S., Park, J., Kim, T. H., Kim, H. Y., & Kwon, T. Y. (2021). Chip-Scale Ultra-Low Field Atomic Magnetometer Based on Coherent Population Trapping. Sensors, 21(4), 1517. https://doi.org/10.3390/s21041517