Mobile Deep Learning System That Calculates UVI Using Illuminance Value of User’s Location
Abstract
:1. Introduction
2. Mobile Deep Learning System
3. Natural Light DB-Based Learning Data Set
4. Mobile DNN Model for Calculation of the Illuminance-Based UV Information
5. Performance Evaluation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Ultraviolet Radiation, Environmental Health Criteria 160; World Health Organization: Geneva, Switzerland, 1994; p. 352. [Google Scholar]
- Reichrath, J. The challenge resulting from positive and negative effects of sunlight: How much solar UV exposure is appropriate to balance between risks of vitamin D deficiency and skin cancer? Prog. Biophys. Mol. Biol. 2006, 92, 9–16. [Google Scholar] [CrossRef]
- Brustad, M.; Edvardsen, K.; Wilsgaard, T.; Engelsen, O.; Aksnes, L.; Lund, E. Seasonality of UV-radiation and vitamin D status at 69 degrees north. Photochem. Photobiol. Sci. 2007, 6, 903–908. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am. J. Clin. Nutr. 2004, 80, 1678S–1688S. [Google Scholar] [CrossRef] [Green Version]
- Engelsen, O. The relationship between ultraviolet radiation exposure and vitamin D status. Nutrients 2010, 2, 482–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, E.Y. 25 (OH) D status and demographic and lifestyle determinants of 25 (OH) D among Korean adults. Asia Pac. J. Clin. Nutr. 2012, 21, 526. [Google Scholar] [PubMed]
- Serrano, M.A.; Cañada, J.; Moreno, J.C.; Gurrea, G. Solar ultraviolet doses and vitamin D in a northern mid-latitude. Sci. Total Environ. 2017, 574, 744–750. [Google Scholar] [CrossRef]
- Kim, H.S.; Oh, S.T.; Lim, J.H. Development of local area alert system against particulate matters and ultraviolet rays based on open IoT platform with P2P. Peer-to-Peer Netw. Appl. 2018, 11, 1240–1251. [Google Scholar] [CrossRef]
- Herndon, J.M.; Hoisington, R.D.; Whiteside, M. Deadly ultraviolet UV-C and UV-B penetration to Earth’s surface: Human and environmental health implications. J. Geog. Environ. Earth Sci. Int. 2018, 14, 1–11. [Google Scholar] [CrossRef]
- Banerjee, S.; Hoch, E.G.; Kaplan, P.D.; Dumont, E.L. A comparative study of wearable ultraviolet radiometers. In Proceedings of the 2017 IEEE Life Sciences Conference (LSC), Sydney, Australia, 13–15 December 2017; pp. 9–12. [Google Scholar]
- Ghosh, A.; Riccardi, G. Recognizing human activities from smartphone sensor signals. In Proceedings of the 22nd ACM international conference on Multimedia, Orlando, FL, USA, 3–7 November 2014; pp. 865–868. [Google Scholar]
- Kim, Y.S.; Kwon, S.Y.; Lim, J.H. Implementation of light quality evaluation system using smartphone. Int. J. Bio-Sci. Bio-Technol. 2016, 8, 259–270. [Google Scholar] [CrossRef]
- Salman, A.G.; Kanigoro, B.; Heryadi, Y. Weather forecasting using deep learning techniques. In Proceedings of the 2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS), Depok, Indonesia, 10–11 October 2015; pp. 281–285. [Google Scholar]
- Kazanasmaz, T.; Günaydin, M.; Binol, S. Artificial neural networks to predict daylight illuminance in office buildings. Build. Environ. 2009, 44, 1751–1757. [Google Scholar] [CrossRef] [Green Version]
- Mei, B.; Li, R.; Cheng, W.; Yu, J.; Cheng, X. Ultraviolet radiation measurement via smart devices. IEEE Int. Things J. 2017, 4, 934–944. [Google Scholar] [CrossRef]
- Feister, U.; Laschewski, G.; Grewe, R.D. UV index forecasts and measurements of health-effective radiation. J. Photochem. Photobiol. B: Biol. 2011, 102, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Şahin, F.; Işik, G.; Şahin, G.; Kara, M.K. Estimation of PM10 levels using feed forward neural networks in Igdir, Turkey. Urban Clim. 2020, 34, 100721. [Google Scholar] [CrossRef]
- Jacovides, C.P.; Tymvios, F.S.; Boland, J.; Tsitouri, M. Artificial Neural Network models for estimating daily solar global UV, PAR and broadband radiant fluxes in an eastern Mediterranean site. Atmos. Res. 2015, 152, 138–145. [Google Scholar] [CrossRef]
- Afifi, M.; Brown, M.S. Sensor-independent illumination estimation for DNN models. arXiv 2019, arXiv:1912.06888. [Google Scholar]
- Allaart, M.; van Weele, M.; Fortuin, P.; Kelder, H. An empirical model to predict the UV-index based on solar zenith angles and total ozone. Meteorol. Appl. 2004, 11, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Park, D.H.; Oh, S.T.; Lim, J.H. Development of a UV index sensor-based portable measurement device with the EUVB ratio of natural light. Sensors 2019, 19, 754. [Google Scholar] [CrossRef] [Green Version]
- Park, S.K.; Moon, H.J.; Min, K.C.; Hwang, C.; Kim, S. Application of a multiple linear regression and an artificial neural network model for the heating performance analysis and hourly prediction of a large-scale ground source heat pump system. Energy Build. 2018, 165, 206–215. [Google Scholar] [CrossRef]
- Kriegeskorte, N.; Golan, T. Neural network models and deep learning. Curr. Biol. 2019, 29, R231–R236. [Google Scholar] [CrossRef]
- Saez, Y.; Baldominos, A.; Isasi, P. A comparison study of classifier algorithms for cross-person physical activity recognition. Sensors 2017, 17, 66. [Google Scholar] [CrossRef]
- Merenda, M.; Porcaro, C.; Iero, D. Edge Machine Learning for AI-enabled IoT devices: A review. Sensors 2020, 20, 2533. [Google Scholar] [CrossRef] [PubMed]
- Freeman, B.S.; Taylor, G.; Gharabaghi, B.; Thé, J. Forecasting air quality time series using deep learning. J. Air Waste Manag. Assoc. 2018, 68, 866–886. [Google Scholar] [CrossRef] [PubMed]
- Kök, İ.; Şimşek, M.U.; Özdemir, S. A deep learning model for air quality prediction in smart cities. In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; pp. 1983–1990. [Google Scholar]
- Russo, A.; Raischel, F.; Lind, P.G. Air quality prediction using optimal neural networks with stochastic variables. Atmos. Environ. 2013, 79, 822–830. [Google Scholar] [CrossRef] [Green Version]
- Stathakis, D. How many hidden layers and nodes? Int. J. Remote Sens. 2009, 30, 2133–2147. [Google Scholar] [CrossRef]
- Potdar, K.; Pardawala, T.S.; Pai, C.D. A comparative study of categorical variable encoding techniques for neural network classifiers. IJCA 2017, 175, 7–9. [Google Scholar] [CrossRef]
- Arora, R.; Basu, A.; Mianjy, P.; Mukherjee, A. Understanding deep neural networks with rectified linear units. arXiv 2016, arXiv:1611.01491. [Google Scholar]
- Manning, J.; Langerman, D.; Ramesh, B.; Gretok, E.; Wilson, C.; George, A.; MacKinnon, J.; Crum, G. Machine-learning space applications on smallsat platforms with tensorflow. In Proceedings of the 32nd Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 4–9 August 2018. [Google Scholar]
- Godar, D.E.; Pope, S.J.; Grant, W.B.; Holick, M.F. Solar UV Doses of Young Americans and Vitamin D3 Production. Environ. Health Perspect. 2012, 120, 139–142. [Google Scholar] [CrossRef] [Green Version]
- Hettiaratchy, S.; Papini, R. Initial management of a major burn: II—assessment and resuscitation. Br. Med. J. 2004, 329, 101–103. [Google Scholar] [CrossRef] [PubMed]
- Godar, D.E.; Pope, S.J.; Grant, W.B.; Holick, M.F. Solar UV doses of adult americans and vitamin D 3 production. Dermatoendocrinol 2011, 3, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Pope, S.J.; Holick, M.F.; Mackin, S.; Godar, D.E. Action spectrum conversion factors that change erythemally weighted to previtamin D3-weighted UV doses. Photochem. Photobiol. 2008, 84, 1277–1283. [Google Scholar] [CrossRef] [Green Version]
- Pope, S.J.; Godar, D.E. Solar UV geometric conversion factors: Horizontal plane to cylinder model. Photochem. Photobiol. 2010, 86, 457–466. [Google Scholar] [CrossRef] [PubMed]
Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Illuminance | 109,553 | 105,979 | 113,366 | 114,582 | 114,631 | 118,696 | 119,874 | 110,516 | 118,333 | 108,353 | 98,414 | 109,484 |
UVI | 5.66275 | 3.70099 | 7.3346 | 8.35783 | 9.403 | 14.3897 | 10.3591 | 8.45462 | 8.32092 | 6.87911 | 3.42396 | 4.35982 |
Correlation | 0.7908 | 0.8588 | 0.8951 | 0.8422 | 0.8368 | 0.8156 | 0.8230 | 0.7197 | 0.7595 | 0.7959 | 0.8449 | 0.7766 |
Input Variables/Number of Hidden Layers | 1 | 2 | 3 |
---|---|---|---|
Illuminance | 0.81 | 0.81 | 0.81 |
Illuminance and solar zenith angle | 0.38 | 0.37 | 0.36 |
Illuminance, solar zenith angle, and monthly characteristics | 0.31 | 0.29 | 0.29 |
Input | Summer (12 June 2019) | Winter (27 November 2019) | ||||||
---|---|---|---|---|---|---|---|---|
Reference Equipment (CAS 140CT) | Proposed Model | Reference Equipment (CAS 140CT) | Proposed Model | |||||
UVI | Vitamin D | UVI | Vitamin D | UVI | Vitamin D | UVI | Vitamin D | |
7:00 | 2.03 | 263.44 | 1.42 | 184.59 | 0.03 | 4.45 | 0.02 | 2.93 |
8:00 | 3.12 | 404.71 | 3.08 | 400.01 | 0.38 | 49.40 | 0.44 | 56.98 |
9:00 | 4.69 | 609.00 | 4.78 | 620.00 | 0.98 | 126.51 | 1.13 | 145.95 |
10:00 | 6.22 | 806.69 | 6.28 | 814.58 | 1.27 | 164.30 | 1.46 | 189.41 |
11:00 | 6.95 | 901.56 | 7.48 | 970.03 | 1.30 | 168.59 | 1.25 | 162.16 |
12:00 | 7.17 | 929.58 | 7.98 | 1034.93 | 1.37 | 177.28 | 1.41 | 182.98 |
13:00 | 6.36 | 824.77 | 8.03 | 1041.57 | 1.47 | 191.05 | 1.64 | 213.08 |
14:00 | 4.50 | 584.14 | 5.59 | 724.68 | 0.94 | 122.37 | 0.84 | 109.14 |
15:00 | 3.00 | 389.50 | 3.84 | 498.64 | 0.26 | 33.52 | 0.23 | 29.47 |
16:00 | 2.10 | 271.77 | 2.41 | 312.06 | 0.05 | 7.03 | 0.05 | 6.68 |
Average | 4.61 | 598.52 | 5.09 | 660.11 | 0.81 | 104.45 | 0.85 | 109.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, S.-T.; Ga, D.-H.; Lim, J.-H. Mobile Deep Learning System That Calculates UVI Using Illuminance Value of User’s Location. Sensors 2021, 21, 1227. https://doi.org/10.3390/s21041227
Oh S-T, Ga D-H, Lim J-H. Mobile Deep Learning System That Calculates UVI Using Illuminance Value of User’s Location. Sensors. 2021; 21(4):1227. https://doi.org/10.3390/s21041227
Chicago/Turabian StyleOh, Seung-Taek, Deog-Hyeon Ga, and Jae-Hyun Lim. 2021. "Mobile Deep Learning System That Calculates UVI Using Illuminance Value of User’s Location" Sensors 21, no. 4: 1227. https://doi.org/10.3390/s21041227
APA StyleOh, S.-T., Ga, D.-H., & Lim, J.-H. (2021). Mobile Deep Learning System That Calculates UVI Using Illuminance Value of User’s Location. Sensors, 21(4), 1227. https://doi.org/10.3390/s21041227