Reliability of Bi-Axial Ankle Stiffness Measurement in Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mechanical Characteristics of the AMT System
2.2. Design of AMT System
2.3. Measured Data from the AMT System
2.4. Participants and Procedures
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Reliability of Ankle Kinematic and Stiffness Measurements
4.2. Study Limitations
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jezernik, S.; Colombo, G.; Keller, T.; Frueh, H.; Morari, M. Robotic orthosis lokomat: A rehabilitation and research tool. Neuromodul. Technol. Neural Interface 2003, 6, 108–115. [Google Scholar] [CrossRef]
- Chaparro-Rico, B.D.; Cafolla, D.; Tortola, P.; Galardi, G. Assessing Stiffness, Joint Torque and ROM for Paretic and Non-Paretic Lower Limbs during the Subacute Phase of Stroke Using Lokomat Tools. Appl. Sci. 2020, 10, 6168. [Google Scholar] [CrossRef]
- Schmartz, A.C.; Meyer-Heim, A.D.; Müller, R.; Bolliger, M. Measurement of muscle stiffness using robotic assisted gait orthosis in children with cerebral palsy: A proof of concept. Disabil. Rehabil. Assist. Technol. 2011, 6, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Farjadian, A.B.; Nabian, M.; Holden, M.K.; Mavroidis, C. Development of 2-DOF ankle rehabilitation system. In Proceedings of the IEEE Annual Northeast Bioengineering Conference, NEBEC, Boston, MA, USA, 25–27 April 2014. [Google Scholar]
- Peng, Q.; Park, H.-S.; Shah, P.; Wilson, N.; Ren, Y.; Wu, Y.-N.; Liu, J.; Gaebler-Spira, D.J.; Zhang, L.-Q. Quantitative evaluations of ankle spasticity and stiffness in neurological disorders using manual spasticity evaluator. J. Rehabil. Res. Dev. 2011, 48, 473. [Google Scholar] [CrossRef] [PubMed]
- Forrester, L.W.; Roy, A.; Goodman, R.N.; Rietschel, J.; Barton, J.E.; Krebs, H.I.; Macko, R.F. Clinical application of a modular ankle robot for stroke rehabilitation. NeuroRehabilitation 2013, 33, 85–97. [Google Scholar] [CrossRef] [Green Version]
- Goodman, R.N.; Rietschel, J.C.; Roy, A.; Jung, B.C.; Diaz, J.; Macko, R.F.; Forrester, L.W. Increased reward in ankle robotics training enhances motor control and cortical efficiency in stroke. J. Rehabil. Res. Dev. 2014, 51, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, J.E.; Latonio, J.; Burdea, G.C.; Boian, R. Post-Stroke Rehabilitation with the Rutgers Ankle System: A Case Study. Presence Teleoper. Virtual Environ. 2001, 10, 416–430. [Google Scholar] [CrossRef]
- Manter, J.T. Movement of the subtalar and transverse tarsal joints. Anat. Rec. 1941, 80, 397–410. [Google Scholar] [CrossRef]
- Sarrafian, S.K. Biomechanics of the subtalar joint complex. Clin. Orthop. Relat. Res. 1993, 209, 17–26. [Google Scholar] [CrossRef]
- Stagni, R.; Leardini, A.; O’Connor, J.J.; Giannini, S. Role of passive structures in the mobility and stability of the human subtalar joint: A literature review. Foot Ankle Int. 2003, 24, 402–409. [Google Scholar] [CrossRef]
- Wu, G.; Siegler, S.; Allard, P.; Kirtley, C.; Leardini, A.; Rosenbaum, D.; Whittle, M.; D’Lima, D.; Cristofolini, L.; Witte, H. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: Ankle, hip, and spine. J. Biomech. 2002, 35, 543–548. [Google Scholar] [CrossRef]
- Hertel, J. Functional Anatomy, Pathomechanics, and Pathophysiology of Lateral Ankle Instability. J. Athl. Train. 2002, 37, 364–375. [Google Scholar] [PubMed]
- Ashton-Miller, J.A.; Ottaviani, R.A.; Hutchinson, C.; Wojtys, E.M. What best protects the inverted weightbearing ankle against further inversion? Evertor muscle strength compares favorably with shoe height, athletic tape, and three orthoses. Am. J. Sports Med. 1996, 24, 800–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Cho, S.; Lee, H. Effects of passive Bi-axial ankle stretching while walking on uneven terrains in older adults with chronic stroke. J. Biomech. 2019, 89, 57–64. [Google Scholar] [CrossRef]
- Zhang, H.; Nussbaum, M.A.; Agnew, M.J. A new method to assess passive and active ankle stiffness during quiet upright stance. J. Electromyogr. Kinesiol. 2015, 25, 937–943. [Google Scholar] [CrossRef]
- Kadaba, M.P.; Ramakrishnan, H.K.; Wootten, M.E. Measurement of lower extremity kinematics during level walking. J. Orthop. Res. 1990, 8, 383–392. [Google Scholar] [CrossRef]
- Shrout, P.E.; Fleiss, J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979, 86, 420–428. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Farjadian, A.B.; Suri, S.; Bugliari, A.; Doucot, P.; Lavins, N.; Mazzotta, A.; Valenzuela, J.P.; Murphy, P.; Kong, Q.; Holden, M.K.; et al. Vi-RABT: Virtually interfaced robotic ankle and balance trainer. In Proceedings of the IEEE International Conference on Robotics and Automation, Hong Kong, China, 31 May–7 June 2014; pp. 228–233. [Google Scholar]
- Roy, A.; Krebs, H.I.; Bever, C.T.; Forrester, L.W.; Macko, R.F.; Hogan, N. Measurement of passive ankle stiffness in subjects with chronic hemiparesis using a novel ankle robot. J. Neurophysiol. 2011, 105, 2132–2149. [Google Scholar] [CrossRef] [Green Version]
- DeVita, P.; Hortobagyi, T. Age increases the skeletal versus muscular component of lower extremity stiffness during stepping down. J. Gerontol. A Biol. Sci. Med. Sci. 2000, 55, B593–B600. [Google Scholar] [CrossRef] [Green Version]
- Chesworth, B.M.; Vandervoort, A.A. Age and passive ankle stiffness in healthy women. Phys. Ther. 1989, 69, 217–224. [Google Scholar] [CrossRef]
- Gajdosik, R.L.; Vander Linden, D.W.; McNair, P.J.; Riggin, T.J.; Albertson, J.S.; Mattick, D.J.; Wegley, J.C. Slow passive stretch and release characteristics of the calf muscles of older women with limited dorsiflexion range of motion. Clin. Biomech. 2004, 19, 398–406. [Google Scholar] [CrossRef]
- Chung, S.G.; Van Rey, E.M.; Bai, Z.; Rogers, M.W.; Roth, E.J.; Zhang, L.Q. Aging-related neuromuscular changes characterized by tendon reflex system properties. Arch. Phys. Med. Rehabil. 2005, 86, 318–327. [Google Scholar] [CrossRef]
- Bowditch, M.G.; Sanderson, P.; Livesey, J.P. The significance of an absent ankle reflex. J. Bone Jt. Surg. Br. 1996, 78, 276–279. [Google Scholar] [CrossRef]
- Mizuno, S.; Sonoda, S.; Takeda, K.; Maeshima, S. Measurement of Resistive Plantar Flexion Torque of the Ankle during Passive Stretch in Healthy Subjects and Patients with Poststroke Hemiplegia. J. Stroke Cerebrovasc. Dis. 2016, 25, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.Y.; Yang, Y.R.; Cheng, S.J.; Wang, R.Y. The relation between ankle impairments and gait velocity and symmetry in people with stroke. Arch. Phys. Med. Rehabil. 2006, 87, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Potter, J.M.; Evans, A.L.; Duncan, G. Gait speed and activities of daily living function in geriatric patients. Arch. Phys. Med. Rehabil. 1995, 76, 997–999. [Google Scholar] [CrossRef]
- Burridge, J.H.; Taylor, P.N.; Hagan, S.A.; Wood, D.E.; Swain, I.D. The effects of common peroneal stimulation on the effort and speed of walking: A randomized controlled trial with chronic hemiplegic patients. Clin. Rehabil. 1997, 11, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; Choudhury, I.A.; Bin Mamat, A. Mechanism and design analysis of articulated ankle foot orthoses for drop-foot. Sci. World J. 2014, 2014, 867869. [Google Scholar] [CrossRef] [Green Version]
- Vandervoort, A.A.; Chesworth, B.M.; Cunningham, D.A.; Paterson, D.H.; Rechnitzer, P.A.; Koval, J.J. Age and Sex Effects on Mobility of the Human Ankle. J. Gerontol. 1992, 47, M17–M21. [Google Scholar] [CrossRef]
- Clarkson, H.M. Musculoskeletal Assessment: Joint Range of Motion and Manual Muscle Strength; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2000. [Google Scholar]
Day 1 | Day 2 | r | ICC | 95% C.I. | Limits of Agreement | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Std | Mean | Std | LB | UB | Mean | LoA-Lower | LoA-Upper | ||||
Slow Movements | DF | 0.233 | 0.082 | 0.172 | 0.091 | 0.683 ** | 0.712 ** | 0.003 | 0.920 | −0.061 | −0.197 | 0.075 |
PF | 0.124 | 0.069 | 0.133 | 0.067 | 0.530 * | 0.703 * | 0.100 | 0.901 | 0.010 | −0.120 | 0.139 | |
INV | 0.067 | 0.073 | 0.028 | 0.076 | 0.690 ** | 0.766 ** | 0.266 | 0.923 | −0.039 | −0.155 | 0.078 | |
EV | −0.013 | 0.089 | −0.051 | 0.090 | 0.419 | 0.575 * | −0.154 | 0.857 | −0.038 | −0.229 | 0.152 | |
Fast Movements | DF | 0.228 | 0.083 | 0.202 | 0.064 | 0.851 ** | 0.879 ** | 0.596 | 0.961 | −0.026 | −0.113 | 0.061 |
PF | 0.129 | 0.067 | 0.132 | 0.064 | 0.535 * | 0.711 ** | 0.104 | 0.904 | 0.0032 | 0.129 | −0.122 | |
INV | 0.067 | 0.075 | 0.031 | 0.072 | 0.433 | 0.572 * | 0.136 | 0.850 | −0.035 | −0.190 | 0.118 | |
EV | 1.561 | 5.893 | 0.093 | 0.433 | −0.071 | 0.282 | −1.617 | 0.806 | −1.467 | −13.110 | 10.170 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Cho, S.; Lee, H. Reliability of Bi-Axial Ankle Stiffness Measurement in Older Adults. Sensors 2021, 21, 1162. https://doi.org/10.3390/s21041162
Kim H, Cho S, Lee H. Reliability of Bi-Axial Ankle Stiffness Measurement in Older Adults. Sensors. 2021; 21(4):1162. https://doi.org/10.3390/s21041162
Chicago/Turabian StyleKim, Hogene, Sangwoo Cho, and Hwiyoung Lee. 2021. "Reliability of Bi-Axial Ankle Stiffness Measurement in Older Adults" Sensors 21, no. 4: 1162. https://doi.org/10.3390/s21041162
APA StyleKim, H., Cho, S., & Lee, H. (2021). Reliability of Bi-Axial Ankle Stiffness Measurement in Older Adults. Sensors, 21(4), 1162. https://doi.org/10.3390/s21041162