Discrimination of Ignitable Liquid Residues in Burned Petroleum-Derived Substrates by Using HS-MS eNose and Chemometrics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fire Debris Preparation
2.2. HS-MS eNose Spectra Acquisition
2.3. Data Analysis
3. Results and Discussion
3.1. Exploratory Study
3.2. Detection of the Presence/Absence of ILR
3.3. Discriminating the Different Types of ILRs
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Almirall, J.R.; Furton, K.G. Characterization of background and pyrolysis products that may interfere with the forensic analysis of fire debris. J. Anal. Appl. Pyrolysis 2004, 71, 51–67. [Google Scholar] [CrossRef]
- González-Rodríguez, J.; Sissons, N.; Robinson, S. Fire debris analysis by Raman spectroscopy and chemometrics. J. Anal. Appl. Pyrolysis 2011, 91, 210–218. [Google Scholar] [CrossRef] [Green Version]
- American Society for Testing and Materials. ASTM E1412-19: Standard Practice for Separation of Ignitable Liquid Residues from Fire Debris Samples by Passive Headspace Concentration With Activated Charcoal; ASTM: West Conshohocken, PA, USA, 2019. [Google Scholar]
- American Society for Testing and Materials. ASTM E2154-15a Standard Practice for Separation and Concentration of Ignitable Liquid Residues from Fire Debris Samples by Passive Headspace Concentration with Solid Phase Microextraction (SPME); ASTM: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Hall, S.; White, G.; Gautam, L. The development of a novel adsorbent for collecting ignitable liquid residues from a fire scene. J. Anal. Appl. Pyrolysis 2016, 122, 304–314. [Google Scholar] [CrossRef]
- Cacho, J.I.; Campillo, N.; Aliste, M.; Viñas, P.; Hernández-Córdoba, M. Headspace sorptive extraction for the detection of combustion accelerants in fire debris. Forensic Sci. Int. 2014, 238, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Ferreiro-González, M.; Barbero, G.F.; Ayuso, J.; Álvarez, J.A.; Palma, M.; Barroso, C.G. Validation of an HS-MS method for direct determination and classification of ignitable liquids. Microchem. J. 2017, 132, 358–364. [Google Scholar] [CrossRef]
- Ferreiro-González, M.; Barbero, G.F.; Palma, M.; Ayuso, J.; Álvarez, J.A.; Barroso, C.G. Determination of ignitable liquids in fire debris: Direct analysis by electronic nose. Sensors 2016, 16, 695. [Google Scholar] [CrossRef] [Green Version]
- American Society for Testing and Materials. ASTM E1618-19 Standard Test Method for Ignitable Liquid Residues in Extracts from Fire Debris Samples by Gas Chromatography–Mass Spectrometry; ASTM: West Conshohocken, PA, USA, 2014. [Google Scholar]
- Coulson, R.; Williams, M.R.; Allen, A.; Akmeemana, A.; Ni, L.; Sigman, M.E. Model-effects on likelihood ratios for fire debris analysis. Forensic Chem. 2018, 7, 38–46. [Google Scholar] [CrossRef]
- National Academy of Science. Strengthening Forensic Science in the United States: A Path Forward; National Academies Press: Washington, DC, USA, 2009; ISBN 9780309131353. [Google Scholar]
- Sigman, M.E.; Williams, M.R. Chemometric applications in fire debris analysis. WIREs Forensic Sci. 2020, 2, e1368. [Google Scholar] [CrossRef]
- Monfreda, M.; Gregori, A. Differentiation of unevaporated gasoline samples according to their brands, by SPME-GC-MS and multivariate statistical analysis. J. Forensic Sci. 2011, 56, 372–380. [Google Scholar] [CrossRef]
- Hupp, A.M.; Marshall, L.J.; Campbell, D.I.; Smith, R.W.; McGuffin, V.L. Chemometric analysis of diesel fuel for forensic and environmental applications. Anal. Chim. Acta 2008, 606, 159–171. [Google Scholar] [CrossRef]
- Desa, W.N.S.M.; Daéid, N.N.; Ismail, D.; Savage, K. Application of unsupervised chemometric analysis and self-organizing feature map (SOFM) for the classification of lighter fuels. Anal. Chem. 2010, 82, 6395–6400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mat-Desa, W.N.S.; Ismail, D.; Daéid, N.N. Classification and source determination of medium petroleum distillates by chemometric and artificial neural networks: A self organizing feature approach. Anal. Chem. 2011, 83, 7745–7754. [Google Scholar] [CrossRef] [PubMed]
- Zorzetti, B.M.; Harynuk, J.J. Using GC × GC-FID profiles to estimate the age of weathered gasoline samples. Anal. Bioanal. Chem. 2011, 401, 2423–2431. [Google Scholar] [CrossRef]
- Baerncopf, J.M.; McGuffin, V.L.; Smith, R.W. Association of Ignitable Liquid Residues to Neat Ignitable Liquids in the Presence of Matrix Interferences Using Chemometric Procedures. J. Forensic Sci. 2011, 56, 70–81. [Google Scholar] [CrossRef]
- Sinkov, N.A.; Sandercock, P.M.L.; Harynuk, J.J. Chemometric classification of casework arson samples based on gasoline content. Forensic Sci. Int. 2014, 235, 24–31. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, P.; Harrington, P.B. Comparison of differential mobility spectrometry and mass spectrometry for gas chromatographic detection of ignitable liquids from fire debris using projected difference resolution. Anal. Bioanal. Chem. 2009, 394, 2061–2067. [Google Scholar] [CrossRef] [PubMed]
- Sigman, M.E.; Williams, M.R.; Castelbuono, J.A.; Colca, J.G.; Clark, C.D. Ignitable liquid classification and identification using the summed-ion mass spectrum. Instrum. Sci. Technol. 2008, 36, 375–393. [Google Scholar] [CrossRef]
- Waddell, E.E.; Williams, M.R.; Sigman, M.E. Progress toward the determination of correct classification rates in fire debris analysis II: Utilizing Soft Independent Modeling of Class Analogy (SIMCA). J. Forensic Sci. 2014, 59, 927–935. [Google Scholar] [CrossRef]
- Waddell, E.E.; Frisch-Daiello, J.L.; Williams, M.R.; Sigman, M.E. Hierarchical cluster analysis of ignitable liquids based on the total ion spectrum. J. Forensic Sci. 2014, 59, 1198–1204. [Google Scholar] [CrossRef] [PubMed]
- Frisch-Daiello, J.L.; Williams, M.R.; Waddell, E.E.; Sigman, M.E. Application of self-organizing feature maps to analyze the relationships between ignitable liquids and selected mass spectral ions. Forensic Sci. Int. 2014, 236, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Waddell, E.E.; Song, E.T.; Rinke, C.N.; Williams, M.R.; Sigman, M.E. Progress Toward the Determination of Correct Classification Rates in Fire Debris Analysis. J. Forensic Sci. 2013, 58, 887–896. [Google Scholar] [CrossRef] [PubMed]
- National Center for Forensic Science. Ignitable Liquids Reference Collection. Available online: https://ncfs.ucf.edu/databases/ilrc-2/ (accessed on 18 January 2021).
- Allen, A.; Williams, M.R.; Sigman, M.E. Application of likelihood ratios and optimal decision thresholds in fire debris analysis based on a partial least squares discriminant analysis (PLS-DA) model. Forensic Chem. 2019, 16, 100188. [Google Scholar] [CrossRef]
- Aliaño-González, M.J.; Ferreiro-González, M.; Barbero, G.F.; Palma, M. Novel method based on ion mobility spectrometry sum spectrum for the characterization of ignitable liquids in fire debris. Talanta 2019, 199, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Calle, J.L.P.; Ferreiro-González, M.; Aliaño-González, M.J.; Barbero, G.F.; Palma, M. Characterization of biodegraded ignitable liquids by headspace-ion mobility spectrometry. Sensors 2020, 20, 6005. [Google Scholar] [CrossRef]
- Pérez Pavón, J.L.; Del Nogal Sánchez, M.; Pinto, C.G.; Fernández Laespada, M.E.; Cordero, B.M.; Peña, A.G. Strategies for qualitative and quantitative analyses with mass spectrometry-based electronic noses. TrAC Trends Anal. Chem. 2006, 25, 257–266. [Google Scholar] [CrossRef]
- Ferreiro-González, M.; Aliaño-González, M.J.; Barbero, G.F.; Palma, M.; Barroso, C.G. Characterization of petroleum-based products in water samples by HS-MS. Fuel 2018, 222, 506–512. [Google Scholar] [CrossRef]
- Luo, D.; Hosseini, H.G.; Stewart, J.R. Application of ANN with extracted parameters from an electronic nose in cigarette brand identification. Sens. Actuators B Chem. 2004, 99, 253–257. [Google Scholar] [CrossRef]
- Morvan, M.; Talou, T.; Beziau, J.F. MOS-MOSFET gas sensors array measurements versus sensory and chemical characterisation of VOC’s emissions from car seat foams. Sensors Actuators B Chem. 2003, 95, 212–223. [Google Scholar] [CrossRef]
- Baby, R.; Cabezas, M.; Castro, E.; Filip, R.; De Reca, N.E.W. Quality control of medicinal plants with an electronic nose. Sensors Actuators B Chem. 2005, 106, 24–28. [Google Scholar] [CrossRef]
- Ferreiro-González, M.; Ayuso, J.; Álvarez, J.A.; Palma, M.; Barroso, C.G. Application of an HS-MS for the detection of ignitable liquids from fire debris. Talanta 2015, 142, 150–156. [Google Scholar] [CrossRef]
- Ferreiro-González, M.; Ayuso, J.; Álvarez, J.A.; Palma, M.; Barroso, C.G. Gasoline analysis by headspace mass spectrometry and near infrared spectroscopy. Fuel 2015, 153, 402–407. [Google Scholar] [CrossRef]
- Ferreiro-González, M.; Barbero, G.F.; Palma, M.; Ayuso, J.; Álvarez, J.A.; Barroso, C.G. Characterization and Differentiation of Petroleum-Derived Products by E-Nose Fingerprints. Sensors 2017, 17, 2544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aliaño-González, M.J.; Ferreiro-González, M.; Barbero, G.F.; Ayuso, J.; Palma, M.; Barroso, C.G. Study of the weathering process of gasoline by eNose. Sensors 2018, 18, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falatová, B.; Ferreiro-González, M.; Martín-Alberca, C.; Kačíková, D.; Galla, Š.; Palma, M.; Barroso, C.G. Effects of Fire Suppression Agents and Weathering in the Analysis of Fire Debris by HS-MS eNose. Sensors 2018, 18, 1933. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.R.; Sigman, M.E.; Lewis, J.; Pitan, K.M. Combined target factor analysis and Bayesian soft-classification of interference-contaminated samples: Forensic Fire Debris Analysis. Forensic Sci. Int. 2012, 222, 373–386. [Google Scholar] [CrossRef]
Classification Function Coefficients | |||||
---|---|---|---|---|---|
m/z | Fire Debris | m/z | Fire Debris | ||
without IL | with IL | without IL | with IL | ||
45 | 25.549 | 139.818 | 104 | –19.066 | –276.990 |
46 | 11.554 | 79.221 | 105 | –15.516 | 25.072 |
53 | 40.396 | –180.484 | 114 | 2.931 | –259.340 |
57 | 28.633 | −2.003 | 136 | –29.525 | 99.590 |
59 | –36.423 | –155.993 | 137 | –5.907 | 250.730 |
60 | –6.324 | –284.772 | 141 | 13.245 | –212.961 |
64 | 25.736 | –331.332 | 142 | –74.702 | 152.084 |
65 | 43.271 | 235.297 | 143 | –34.091 | 271.643 |
71 | –11.225 | 459.551 | 156 | –11.293 | 210.897 |
72 | 45.816 | –279.873 | 160 | 28.248 | –252.297 |
77 | 24.696 | 109.341 | 169 | –49.213 | 56.574 |
89 | 88.155 | –265.753 | 181 | 9.034 | 337.532 |
91 | 0.834 | 73.420 | 193 | 49.974 | –206.138 |
93 | –65.970 | –184.987 | 197 | –53.574 | 259.863 |
97 | –1.042 | 111.749 | (Constant) | –18.783 | –78.320 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falatová, B.; Ferreiro-González, M.; P. Calle, J.L.; Álvarez, J.Á.; Palma, M. Discrimination of Ignitable Liquid Residues in Burned Petroleum-Derived Substrates by Using HS-MS eNose and Chemometrics. Sensors 2021, 21, 801. https://doi.org/10.3390/s21030801
Falatová B, Ferreiro-González M, P. Calle JL, Álvarez JÁ, Palma M. Discrimination of Ignitable Liquid Residues in Burned Petroleum-Derived Substrates by Using HS-MS eNose and Chemometrics. Sensors. 2021; 21(3):801. https://doi.org/10.3390/s21030801
Chicago/Turabian StyleFalatová, Barbara, Marta Ferreiro-González, José Luis P. Calle, José Ángel Álvarez, and Miguel Palma. 2021. "Discrimination of Ignitable Liquid Residues in Burned Petroleum-Derived Substrates by Using HS-MS eNose and Chemometrics" Sensors 21, no. 3: 801. https://doi.org/10.3390/s21030801
APA StyleFalatová, B., Ferreiro-González, M., P. Calle, J. L., Álvarez, J. Á., & Palma, M. (2021). Discrimination of Ignitable Liquid Residues in Burned Petroleum-Derived Substrates by Using HS-MS eNose and Chemometrics. Sensors, 21(3), 801. https://doi.org/10.3390/s21030801