Active Compensation of Radiation Effects on Optical Fibers for Sensing Applications
Abstract
:1. Introduction
2. Geometric Structure and Principles
3. Compaction Analysis
4. Radiation Effects on Cavities
5. Thermal Effects on Cavities
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Primak, W.; Kampwirth, R. The Radiation Compaction of Vitreous Silica. J. Appl. Phys. 1968, 39, 5651–5658. [Google Scholar] [CrossRef]
- Primak, W. Mechanism for the Radiation Compaction of Vitreous Silica. J. Appl. Phys. 1972, 43, 2745–2754. [Google Scholar] [CrossRef]
- Piao, F.; Oldham, W.G.; Haller, E.E. The Mechanism of Radiation-Induced Compaction in Vitreous Silica. J. Non Cryst. Solids 2000, 276, 61–71. [Google Scholar] [CrossRef]
- Grimsditch, M. Polymorphism in Amorphous SiO2. Phys. Rev. Lett. 1984, 52, 2379–2381. [Google Scholar] [CrossRef]
- Sonneville, C.; Mermet, A.; Champagnon, B.; Martinet, C.; Margueritat, J.; de Ligny, D.; Deschamps, T.; Balima, F. Progressive Transformations of Silica Glass upon Densification. J. Chem. Phys. 2012, 137, 124505. [Google Scholar] [CrossRef]
- Polian, A.; Grimsditch, M. Room-Temperature Densification of a- SiO2 versus Pressure. Phys. Rev. B 1990, 41, 6086–6087. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Ema, K. Raman Spectra of SiO2 Fibers at High Tensile Strain. In The Physics and Technology of Amorphous SiO2; Devine, R.A.B., Ed.; Springer: Boston, MA, USA, 1988; pp. 71–75. ISBN 9781461310310. [Google Scholar]
- Hemley, R.J.; Mao, H.K.; Bell, P.M.; Mysen, B.O. Raman Spectroscopy of SiO2 Glass at High Pressure. Phys. Rev. Lett. 1986, 57, 747–750. [Google Scholar] [CrossRef]
- Petrie, C.M.; Birri, A.; Blue, T.E. High-Dose Temperature-Dependent Neutron Irradiation Effects on the Optical Transmission and Dimensional Stability of Amorphous Fused Silica. J. Non Cryst. Solids 2019, 525, 119668. [Google Scholar] [CrossRef]
- Rothschild, M.; Ehrlich, D.J.; Shaver, D.C. Effects of Excimer Laser Irradiation on the Transmission, Index of Refraction, and Density of Ultraviolet Grade Fused Silica. Appl. Phys. Lett. 1989, 55, 1276–1278. [Google Scholar] [CrossRef]
- Primak, W.; Kampwirth, R. Impurity Effect in the Ionization Dilatation of Vitreous Silica. J. Appl. Phys. 1968, 39, 6010–6017. [Google Scholar] [CrossRef]
- Shelby, J.E. Radiation Effects in Hydrogen-impregnated Vitreous Silica. J. Appl. Phys. 1979, 50, 3702–3706. [Google Scholar] [CrossRef]
- Higby, P.L.; Friebele, E.J.; Shaw, C.M.; Rajaram, M.; Graham, E.K.; Kinser, D.L.; Wolff, E.G. Radiation Effects on the Physical Properties of Low-Expansion-Coefficient Glasses and Ceramics. J. Am. Ceram. Soc. 1988, 71, 796–802. [Google Scholar] [CrossRef]
- Norris, C.B.; EerNisse, E.P. Ionization Dilatation Effects in Fused Silica from 2 to 18-keV Electron Irradiation. J. Appl. Phys. 1974, 45, 3876–3882. [Google Scholar] [CrossRef]
- Smith, C.M.; Borrelli, N.F.; Allan, D.C.; Seward, T.P. Compaction of Fused Silica under Low-Fluence/Long-Term 193-nm Irradiation. In Proceedings of the Optical Microlithography X, Santa Clara, CA, USA, 7 July 1997; International Society for Optics and Photonics: Bellingham, WA, USA, 1997; Volume 3051, pp. 116–121. [Google Scholar]
- Schenker, R.E.; Piao, F.; Oldham, W.G. Material Limitations to 193-nm Lithographic System Lifetimes. In Proceedings of the Optical Microlithography IX, Santa Clara, CA, USA, 7 June 1996; International Society for Optics and Photonics: Bellingham, WA, USA, 1996; Volume 2726, pp. 698–706. [Google Scholar]
- Meade, C.; Hemley, R.J.; Mao, H.K. High-Pressure x-Ray Diffraction of SiO2 Glass. Phys. Rev. Lett. 1992, 69, 1387–1390. [Google Scholar] [CrossRef]
- Susman, S.; Volin, K.J.; Price, D.L.; Grimsditch, M.; Rino, J.P.; Kalia, R.K.; Vashishta, P.; Gwanmesia, G.; Wang, Y.; Liebermann, R.C. Intermediate-Range Order in Permanently Densified Vitreous SiO2: A Neutron-Diffraction and Molecular-Dynamics Study. Phys. Rev. B 1991, 43, 1194–1197. [Google Scholar] [CrossRef] [PubMed]
- Susman, S.; Volin, K.J.; Liebermann, R.C.; Gwanmesia, G.D.; Wang, Y. Structural Changes in Irreversibly Densified Fused Silica: Implications for the Chemical Resistance of High Level Nuclear Waste Glasses. Phys. Chem. Glasses 1990, 31, 144–150. [Google Scholar]
- Primak, W. Fast-Neutron-Induced Changes in Quartz and Vitreous Silica. Phys. Rev. 1958, 110, 1240–1254. [Google Scholar] [CrossRef]
- Cheymol, G.; Remy, L.; Gusarov, A.; Kinet, D.; Mégret, P.; Laffont, G.; Blanchet, T.; Morana, A.; Marin, E.; Girard, S. Study of Fiber Bragg Grating Samples Exposed to High Fast Neutron Fluences. IEEE Trans. Nucl. Sci. 2018, 65, 2494–2501. [Google Scholar] [CrossRef]
- Remy, L.; Cheymol, G.; Gusarov, A.; Morana, A.; Marin, E.; Girard, S. Compaction in Optical Fibres and Fibre Bragg Gratings Under Nuclear Reactor High Neutron and Gamma Fluence. IEEE Trans. Nucl. Sci. 2016, 63, 2317–2322. [Google Scholar] [CrossRef]
- Esposito, F.; Ranjan, R.; Stăncălie, A.; Sporea, D.; Neguţ, D.; Becherescu, N.; Campopiano, S.; Iadicicco, A. Real-Time Analysis of Arc-Induced Long Period Gratings under Gamma Irradiation. Sci. Rep. 2017, 7, 43389. [Google Scholar] [CrossRef] [Green Version]
- Stancălie, A.; Esposito, F.; Ranjan, R.; Bleotu, P.; Campopiano, S.; Iadicicco, A.; Sporea, D. Arc-Induced Long Period Gratings in Standard and Speciality Optical Fibers under Mixed Neutron-Gamma Irradiation. Sci. Rep. 2017, 7, 15845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheymol, G.; Gusarov, A.; Gaillot, S.; Destouches, C.; Caron, N. Dimensional Measurements Under High Radiation With Optical Fibre Sensors Based on White Light Interferometry—Report on Irradiation Tests. IEEE Trans. Nucl. Sci. 2014, 61, 2075–2081. [Google Scholar] [CrossRef]
- Cheymol, G.; Villard, J.F.; Gusarov, A.; Brichard, B. Fibre Optic Extensometer for High Radiation and High Temperature Nuclear Applications. IEEE Trans. Nucl. Sci. 2013, 60, 3781–3784. [Google Scholar] [CrossRef]
- Girard, S.; Kuhnhenn, J.; Gusarov, A.; Brichard, B.; Van Uffelen, M.; Ouerdane, Y.; Boukenter, A.; Marcandella, C. Radiation Effects on Silica-Based Optical Fibers: Recent Advances and Future Challenges. IEEE Trans. Nucl. Sci. 2013, 60, 2015–2036. [Google Scholar] [CrossRef]
- Girard, S.; Alessi, A.; Richard, N.; Martin-Samos, L.; De Michele, V.; Giacomazzi, L.; Agnello, S.; Francesca, D.D.; Morana, A.; Winkler, B.; et al. Overview of Radiation Induced Point Defects in Silica-Based Optical Fibers. Rev. Phys. 2019, 4, 100032. [Google Scholar] [CrossRef]
- Girard, S.; Keurinck, J.; Ouerdane, Y.; Meunier, J.-P.; Boukenter, A. Gamma-Rays and Pulsed X-Ray Radiation Responses of Germanosilicate Single-Mode Optical Fibers: Influence of Cladding Codopants. J. Lightwave Technol. 2004, 22, 1915. [Google Scholar] [CrossRef]
- Regnier, E.; Flammer, I.; Girard, S.; Gooijer, F.; Achten, F.; Kuyt, G. Low-Dose Radiation-Induced Attenuation at InfraRed Wavelengths for P-Doped, Ge-Doped and Pure Silica-Core Optical Fibres. IEEE Trans. Nucl. Sci. 2007, 54, 1115–1119. [Google Scholar] [CrossRef]
- Brichard, B.; Agnello, S.; Nuccio, L. Comparison between Point Defect Generation by γ-Rays in Bulk and Fibre Samples of High Purity Amorphous SiO2. IEEE Trans. Nucl. Sci. 2018, 55, 2121–2125. [Google Scholar] [CrossRef]
- Girard, S.; Marcandella, C.; Alessi, A.; Boukenter, A.; Ouerdane, Y.; Richard, N.; Paillet, P.; Gaillardin, M.; Raine, M. Transient Radiation Responses of Optical Fibers: Influence of MCVD Process Parameters. IEEE Trans. Nucl. Sci. 2012, 59, 2894–2901. [Google Scholar] [CrossRef] [Green Version]
- Origlio, G.; Cannas, M.; Girard, S.; Boscaino, R.; Boukenter, A.; Ouerdane, Y. Influence of the Drawing Process on the Defect Generation in Multistep-Index Germanium-Doped Optical Fibers. Opt. Lett. 2009, 34, 2282–2284. [Google Scholar] [CrossRef]
- Griscom, D.L.; Gingerich, M.E.; Friebele, E.J. Model for the Dose, Dose-Rate and Temperature Dependence of Radiation-Induced Loss in Optical Fibers. IEEE Trans. Nucl. Sci. 1994, 41, 523–527. [Google Scholar] [CrossRef] [Green Version]
- Henschel, H.; Koehn, O.; Schmidt, H.U. Influence of Dose Rate on Radiation-Induced Loss in Optical Fibers. In Proceedings of the Optical Systems in Adverse Environments, Singapore, 1 March 1991; International Society for Optics and Photonics: Bellingham, WA, USA, 1990; Volume 1399, pp. 49–63. [Google Scholar]
- Friebele, E.J.; Askins, C.G.; Gingerich, M.E. Effect of Low Dose Rate Irradiation on Doped Silica Core Optical Fibers. Appl. Opt. 1984, 23, 4202–4208. [Google Scholar] [CrossRef] [PubMed]
- Borgermans, P.; Brichard, B.; Decreton, M.C. Models for the Radiation-Induced Attenuation in Pure Silica Optical Fibers: Spectral Dependencies and Absorption Band Kinetics. In Proceedings of the Photonics for Space and Radiation Environments II, Toulouse, France, 28 January 2002; International Society for Optics and Photonics: Bellingham, WA, USA, 2001; Volume 4547, pp. 53–60. [Google Scholar]
- Jin, J.; Xu, R.; Liu, J.; Song, N. Experimental Investigation of the Factors Influencing Temperature Dependence of Radiation-Induced Attenuation in Optical Fiber. Opt. Fiber Technol. 2014, 20, 110–115. [Google Scholar] [CrossRef]
- Henschel, H.; Kohn, O. Regeneration of Irradiated Optical Fibres by Photobleaching? IEEE Trans. Nucl. Sci. 2000, 47, 699–704. [Google Scholar] [CrossRef]
- Ramsey, A.T.; Tighe, W.; Bartolick, J.; Morgan, P.D. Radiation Effects on Heated Optical Fibers. Rev. Sci. Instrum. 1997, 68, 632–635. [Google Scholar] [CrossRef]
- Girard, S.; Marcandella, C.; Morana, A.; Perisse, J.; Francesca, D.D.; Paillet, P.; Macé, J.-R.; Boukenter, A.; Léon, M.; Gaillardin, M.; et al. Combined High Dose and Temperature Radiation Effects on Multimode Silica-Based Optical Fibers. IEEE Trans. Nucl. Sci. 2013, 60, 4305–4313. [Google Scholar] [CrossRef]
- Kher, S.; Chaubey, S.; Oak, S.M.; Gusarov, A. Measurement of γ-Radiation Induced Refractive Index Changes in B/Ge Doped Fiber Using LPGs. IEEE Photon. Technol. Lett. 2013, 25, 2070–2073. [Google Scholar] [CrossRef]
- Hutchings, D.C.; Sheik-Bahae, M.; Hagan, D.J.; Van Stryland, E.W. Kramers-Krönig Relations in Nonlinear Optics. Opt. Quant. Electron. 1992, 24, 1–30. [Google Scholar] [CrossRef]
- Kakiuchida, H.; Saito, K.; Ikushima, A.J. Refractive Index, Density and Polarizability of Silica Glass with Various Fictive Temperatures. Jpn. J. Appl. Phys. 2004, 43, L743. [Google Scholar] [CrossRef]
- Alessi, A.; Agnello, S.; Grandi, S.; Parlato, A.; Gelardi, F.M. Refractive Index Change Dependence on Ge(1) Defects in γ-Irradiated Ge-Doped Silica. Phys. Rev. B 2009, 80, 014103. [Google Scholar] [CrossRef]
- Kitamura, N.; Toguchi, Y.; Funo, S.; Yamashita, H.; Kinoshita, M. Refractive Index of Densified Silica Glass. J. Non Cryst. Solids 1993, 159, 241–245. [Google Scholar] [CrossRef]
- Cheymol, G.; Long, H.; Villard, J.F.; Brichard, B. High Level Gamma and Neutron Irradiation of Silica Optical Fibers in CEA OSIRIS Nuclear Reactor. IEEE Trans. Nucl. Sci. 2008, 55, 2252–2258. [Google Scholar] [CrossRef]
- Rana, S.; Subbaraman, H.; Fleming, A.; Kandadai, N. Numerical Analysis of Radiation Effects on Fiber Optic Sensors. Sensors 2021, 21, 4111. [Google Scholar] [CrossRef]
- Malitson, I.H. Interspecimen Comparison of the Refractive Index of Fused Silica. J. Opt. Soc. Am. 1965, 55, 1205–1209. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Wu, J.; Yuan, P. Fiber-Optic Hybrid-Structured Fabry–Perot Interferometer Based On Large Lateral Offset Splicing for Simultaneous Measurement of Strain and Temperature. J. Lightwave Technol. 2017, 35, 4311–4315. [Google Scholar] [CrossRef]
- Gusarov, A.; Hoeffgen, S.K. Radiation Effects on Fiber Gratings. IEEE Trans. Nucl. Sci. 2013, 60, 2037–2053. [Google Scholar] [CrossRef]
- Werneck, M.M.; Allil, R.C.S.B.; Ribeiro, B.A.; de Nazaré, F.V.B. A Guide to Fiber Bragg Grating Sensors. In Current Trends in Short- and Long-Period Fiber Gratings; InTech: Rijeka, Croatia, 2013; pp. 1–24. [Google Scholar]
- Morana, A. Gamma-Rays and Neutrons Effects on Optical Fibers and Bragg Gratings for Temperature Sensors. In Université Jean Monnet—Saint-Etienne; Università Degli Studi di Palermo: Palerme, Italy, 2013. [Google Scholar]
- Slattery, S.A.; Nikogosyan, D.N.; Brambilla, G. Fiber Bragg Grating Inscription by High-Intensity Femtosecond UV Laser Light: Comparison with Other Existing Methods of Fabrication. J. Opt. Soc. Am. B 2005, 22, 354–361. [Google Scholar] [CrossRef]
- Antunes, P.; Domingues, F.; Granada, M.; André, P. Mechanical Properties of Optical Fibers. In Selected Topics on Optical Fiber Technology; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Stone, J.A.; Stejskal, A. Using Helium as a Standard of Refractive Index: Correcting Errors in a Gas Refractometer. Metrologia 2004, 41, 189–197. [Google Scholar] [CrossRef]
Cavity | Original Cavity Length (µm) | Retrieved Cavity Length (µm) |
---|---|---|
Air cavity | 117 | 117.39 |
Silica cavity | 211 | 210.69 |
Cavity | Before Irradiation Retrieved Original Cavity Length (µm) | After Irradiation Retrieved Compacted Cavity Length (µm) |
---|---|---|
Air cavity | 117.39 | 116.56 |
Silica cavity | 210.69 | 209.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rana, S.; Fleming, A.; Kandadai, N.; Subbaraman, H. Active Compensation of Radiation Effects on Optical Fibers for Sensing Applications. Sensors 2021, 21, 8193. https://doi.org/10.3390/s21248193
Rana S, Fleming A, Kandadai N, Subbaraman H. Active Compensation of Radiation Effects on Optical Fibers for Sensing Applications. Sensors. 2021; 21(24):8193. https://doi.org/10.3390/s21248193
Chicago/Turabian StyleRana, Sohel, Austin Fleming, Nirmala Kandadai, and Harish Subbaraman. 2021. "Active Compensation of Radiation Effects on Optical Fibers for Sensing Applications" Sensors 21, no. 24: 8193. https://doi.org/10.3390/s21248193
APA StyleRana, S., Fleming, A., Kandadai, N., & Subbaraman, H. (2021). Active Compensation of Radiation Effects on Optical Fibers for Sensing Applications. Sensors, 21(24), 8193. https://doi.org/10.3390/s21248193