A Pilot Study Quantifying Center of Mass Trajectory during Dynamic Balance Tasks Using an HTC Vive Tracker Fixed to the Pelvis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Motion Capture Systems
2.1.1. HTC Vive System
2.1.2. Vicon System
2.2. Immersive Virtual Reality Envrionement
2.3. Measurement Set Up
2.4. Participants
2.5. Data Collection
2.6. Outcomes
2.7. Statistical Analysis
3. Results
3.1. RMS
3.2. Displacement
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Florence, C.S.; Bergen, G.; Atherly, A.; Burns, E.; Stevens, J.; Drake, C. Medical Costs of Fatal and Nonfatal Falls in Older Adults. J. Am. Geriatr. Soc. 2018, 66, 693–698. [Google Scholar] [CrossRef] [Green Version]
- Forster, A.; Young, J. Incidence and consequences of falls due to stroke: A systematic inquiry. BMJ 1995, 311, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Hyndman, D.; Ashburn, A.; Stack, E. Fall events among people with stroke living in the community: Circumstances of falls and characteristics of fallers. Arch. Phys. Med. Rehabil. 2002, 83, 165–170. [Google Scholar] [CrossRef]
- Koller, W.C.; Glatt, S.; Vetere-Overfield, B.; Hassanein, R. Falls and Parkinson’s disease. Clin. Neuropharmacol. 1989, 12, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Shumway-Cook, A.; Baldwin, M.; Polissar, N.L.; Gruber, W. Predicting the Probability for Falls in Community-Dwelling Older Adults. Phys. Ther. 1997, 77, 812–819. [Google Scholar] [CrossRef] [Green Version]
- Berg, K.O.; Wood-Dauphinee, S.L.; Williams, J.I.; Maki, B. Measuring balance in the elderly: Validation of an instrument. Can. J. Public Health Rev. Can. Sante Publique 1992, 83 (Suppl. 2), S7–S11. [Google Scholar]
- Godi, M.; Franchignoni, F.; Caligari, M.; Giordano, A.; Turcato, A.M.; Nardone, A. Comparison of Reliability, Validity, and Responsiveness of the Mini-BESTest and Berg Balance Scale in Patients with Balance Disorders. Phys. Ther. 2013, 93, 158–167. [Google Scholar] [CrossRef] [Green Version]
- Muir, S.W.; Berg, K.; Chesworth, B.; Speechley, M. Use of the Berg Balance Scale for Predicting Multiple Falls in Community-Dwelling Elderly People: A Prospective Study. Phys. Ther. 2008, 88, 449–459. [Google Scholar] [CrossRef] [Green Version]
- Qutubuddin, A.A.; Pegg, P.O.; Cifu, D.; Brown, R.; McNamee, S.; Carne, W. Validating the Berg Balance Scale for patients with Parkinson’s disease: A key to rehabilitation evaluation. Arch. Phys. Med. Rehabil. 2005, 86, 789–792. [Google Scholar] [CrossRef] [PubMed]
- Berg, K.; Wood-Dauphinee, S.; Williams, J.I. The Balance Scale: Reliability assessment with elderly residents and patients with an acute stroke. Scand. J. Rehabil. Med. 1995, 27, 27–36. [Google Scholar]
- Blum, L.; Korner-Bitensky, N. Usefulness of the Berg Balance Scale in Stroke Rehabilitation: A Systematic Review. Phys. Ther. 2008, 88, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, T.J.; Garland, S. Standing balance during internally produced perturbations in subjects with hemiplegia: Validation of the balance scale. Arch. Phys. Med. Rehabil. 1996, 77, 656–662. [Google Scholar] [CrossRef]
- Stevenson, T.J. Detecting change in patients with stroke using the Berg Balance Scale. Aust. J. Physiother. 2001, 47, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Whitney, S.; Wrisley, D.; Furman, J. Concurrent Validity of the Berg Balance Scale and the Dynamic Gait Index in People with Vestibular Dysfunction; Wiley Online Library: Hoboken, NJ, USA, 2003. [Google Scholar]
- Park, S.-H. Tools for assessing fall risk in the elderly: A systematic review and meta-analysis. Aging Clin. Exp. Res. 2017, 30, 1–16. [Google Scholar] [CrossRef]
- Howcroft, J.; Kofman, J.; Lemaire, E.D. Review of fall risk assessment in geriatric populations using inertial sensors. J. Neuroeng. Rehabil. 2013, 10, 91. [Google Scholar] [CrossRef] [Green Version]
- Rispens, S.M.; van Schooten, K.S.; Pijnappels, M.; Daffertshofer, A.; Beek, P.J.; van Dieen, J.H. Identification of fall risk predictors in daily life measurements: Gait characteristics’ reliability and association with self-reported fall history. Neurorehabil. Neural Repair. 2015, 29, 54–61. [Google Scholar] [CrossRef]
- Shany, T.; Redmond, S.J.; Marschollek, M.; Lovell, N.H. Assessing fall risk using wearable sensors: A practical discussion A review of the practicalities and challenges associated with the use of wearable sensors for quantification of fall risk in older people. Z. Gerontol. Geriat. 2012, 45, 694–706. [Google Scholar] [CrossRef]
- O’Sullivan, M.; Blake, C.; Cunningham, C.; Boyle, G.; Finucane, C. Correlation of accelerometry with clinical balance tests in older fallers and non-fallers. Age Ageing 2008, 38, 308–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Veen, S.M.; Bordeleau, M.; Pidcoe, P.E.; France, C.R.; Thomas, J.S. Agreement Analysis between Vive and Vicon Systems to Monitor Lumbar Postural Changes. Sensors 2019, 19, 3632. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.-W.; Chi, S.-Y.; Chen, B.-Y.; Hwang, Y.-H. Reliability and Validity of a Virtual Reality-Based System for Evaluating Postural Stability. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 29, 85–91. [Google Scholar] [CrossRef]
- Stefan, A.M.; Gronau, Q.F.; Schönbrodt, F.D.; Wagenmakers, E.-J. A tutorial on Bayes Factor Design Analysis using an informed prior. Behav. Res. Methods 2019, 51, 1042–1058. [Google Scholar] [CrossRef] [Green Version]
- Yardley, L.; Beyer, N.; Hauer, K.; Kempen, G.; Piot-Ziegler, C.; Todd, C. Development and initial validation of the Falls Efficacy Scale-International (FES-I). Age Ageing 2005, 34, 614–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tinetti, M.E.; Richman, D.; Powell, L. Falls Efficacy as a Measure of Fear of Falling. J. Gerontol. 1990, 45, P239–P243. [Google Scholar] [CrossRef]
- Mapelli, A.; Zago, M.; Fusini, L.; Galante, D.; Colombo, A.; Sforza, C. Validation of a protocol for the estimation of three-dimensional body center of mass kinematics in sport. Gait Posture 2013, 39, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Giansanti, D. Investigation of fall-risk using a wearable device with accelerometers and rate gyroscopes. Physiol. Meas. 2006, 27, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Gietzelt, M.; Nemitz, G.; Wolf, K.-H.; Zu Schwabedissen, H.M.; Haux, R.; Marschollek, M. A clinical study to assess fall risk using a single waist accelerometer. Inform. Health Soc. Care 2009, 34, 181–188. [Google Scholar] [CrossRef]
- Marschollek, M.; Rehwald, A.; Wolf, K.H.; Gietzelt, M.; Nemitz, G.; Zu Schwabedissen, H.M.; Haux, R. Sensor-based fall risk assessment—An expert ‘to go’. Methods Inf. Med. 2011, 50, 420–426. [Google Scholar]
- Ganea, R.; Paraschiv-Ionescu, A.; Büla, C.; Rochat, S.; Aminian, K. Multi-parametric evaluation of sit-to-stand and stand-to-sit transitions in elderly people. Med. Eng. Phys. 2011, 33, 1086–1093. [Google Scholar] [CrossRef]
- Giansanti, D.; Maccioni, G.; Cesinaro, S.; Benvenuti, F.; Macellari, V. Assessment of fall-risk by means of a neural network based on parameters assessed by a wearable device during posturography. Med. Eng. Phys. 2008, 30, 367–372. [Google Scholar] [CrossRef]
- Giansanti, D.; Macellari, V.; Maccioni, G. New neural network classifier of fall-risk based on the Mahalanobis distance and kinematic parameters assessed by a wearable device. Physiol. Meas. 2008, 29, N11–N19. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A Short Physical Performance Battery Assessing Lower Extremity Function: Association with Self-Reported Disability and Prediction of Mortality and Nursing Home Admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Redmond, S.J.; Narayanan, M.R.; Lovell, N.H. Classification between non-multiple fallers and multiple fallers using a triaxial accelerometry-based system. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 1499–1502. [Google Scholar] [CrossRef]
- Liu, Y.; Redmond, S.; Wang, N.; Blumenkron, F.; Narayanan, M.R.; Lovell, N. Spectral Analysis of Accelerometry Signals From a Directed-Routine for Falls-Risk Estimation. IEEE Trans. Biomed. Eng. 2011, 58, 2308–2315. [Google Scholar] [CrossRef]
- Redmond, S.J.; Scalzi, M.E.; Narayanan, M.R.; Lord, S.R.; Cerutti, S.; Lovell, N.H. Automatic Segmentation of Triaxial Accelerometry Signals for Falls Risk Estimation. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 2234–2237. [Google Scholar]
- Hurvitz, E.A.; Richardson, J.K.; Werner, R.A.; Ruhl, A.M.; Dixon, M.R. Unipedal stance testing as an indicator of fall risk among older outpatients. Arch. Phys. Med. Rehabil. 2000, 81, 587–591. [Google Scholar] [CrossRef]
Task Number | Description |
---|---|
1 | Sitting to standing |
2 | Standing unsupported |
3 | Sitting with back unsupported but feet supported |
4 | Standing to sitting |
5 | Transfer from chair to chair |
6 | Standing unsupported with eyes closed |
7 | Standing unsupported with narrow base of support |
8 | Reaching forward with outstretched arm while standing |
9 | Pick up object from the floor from standing position |
10 | Turning to look behind over left and right shoulder while standing |
11 | Turning 360° |
12 | Placing alternate foot on stool |
13 | Standing unsupported one foot in front |
14 | Standing on one leg |
COM X (cm) | COM Y (cm) | COM Z (cm) | |
---|---|---|---|
Sitting to standing n = 13 | 2.35 ± 1.65 | 0.27 ± 0.17 | 2.53 ± 1.36 |
Standing unsupported n = 10 | 0.34 ± 0.24 | 0.31 ± 0.17 | 0.19 ± 0.07 |
Sitting unsupported n = 9 | 0.14 ± 0.15 | 0.10 ± 0.05 | 0.12 ± 0.15 |
Standing unsupported with eyes closed n = 10 | 0.66 ± 0.68 | 0.49 ± 0.38 | 0.29 ± 0.29 |
Standing with feet together n = 10 | 1.16 ± 0.38 | 0.94 ± 0.29 | 0.46 ± 0.11 |
Reaching n = 11 | 2.28 ± 1.29 | 1.57 ± 1.06 | 1.55 ± 0.94 |
Picking up object n = 12 | 6.43 ± 0.60 | 1.81 ± 1.36 | 4.14 ± 2.90 |
Looking over shoulder n = 10 | 2.86 ± 0.98 | 7.97 ± 2.72 | 0.54 ± 0.18 |
Turn 360 n = 8 | 10.44 ± 1.46 | 9.12 ± 1.36 | 0.66 ± 0.17 |
Alternative stepping n = 10 | 1.83 ± 0.45 | 4.13 ± 1.60 | 1.21 ± 0.71 |
Tandem stance n = 7 | 1.80 ± 0.34 | 1.70 ± 0.51 | 0.74 ± 0.23 |
One leg standing n = 12 | 1.59 ± 0.83 | 2.06 ± 1.10 | 0.90 ± 0.48 |
COMX | HTC Vive TrackerX | COMY | HTC Vive TrackerY | |
---|---|---|---|---|
Standing unsupported (cm) | 3.5 ± 1.0 | 3.7 ± 0.9 | 0.2 ± 1.1 | 2.3 ± 1.4 |
Standing with eye closed (cm) | 2.1 ± 1.2 | 2.5 ± 1.0 | 0.9 ± 0.3 | 1.9 ± 1.6 |
Narrow base of support (cm) | 26.6 ± 3.3 | 30.3 ± 3.9 | 25.5 ± 0.063 | 28.6 ± 7.8 |
Tandem stance (cm) | 19.6 ± 6.2 | 22.5 ± 2.8 | 28.3 ± 6.3 | 31.2 ± 8.9 |
One leg stance (cm) | 8.2 ± 2.7 | 9.3 ± 4.5 | 13.9 ± 6.3 | 15.2 ± 7.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Veen, S.M.; Thomas, J.S. A Pilot Study Quantifying Center of Mass Trajectory during Dynamic Balance Tasks Using an HTC Vive Tracker Fixed to the Pelvis. Sensors 2021, 21, 8034. https://doi.org/10.3390/s21238034
van der Veen SM, Thomas JS. A Pilot Study Quantifying Center of Mass Trajectory during Dynamic Balance Tasks Using an HTC Vive Tracker Fixed to the Pelvis. Sensors. 2021; 21(23):8034. https://doi.org/10.3390/s21238034
Chicago/Turabian Stylevan der Veen, Susanne M., and James S. Thomas. 2021. "A Pilot Study Quantifying Center of Mass Trajectory during Dynamic Balance Tasks Using an HTC Vive Tracker Fixed to the Pelvis" Sensors 21, no. 23: 8034. https://doi.org/10.3390/s21238034
APA Stylevan der Veen, S. M., & Thomas, J. S. (2021). A Pilot Study Quantifying Center of Mass Trajectory during Dynamic Balance Tasks Using an HTC Vive Tracker Fixed to the Pelvis. Sensors, 21(23), 8034. https://doi.org/10.3390/s21238034