Experimental Investigation of the Atmosphere-Regolith Water Cycle on Present-Day Mars
Abstract
:1. Introduction
2. Diurnal Water Cycle at Gale Crater
- a: air and g: ground.
- RHa (Ta) can be applied to the air to retrieve vmr and then be used to calculate RHg (Tg). Here RHi represents the relative humidity with respect to ice, whereas RHl represents the relative humidity with respect to liquid.
- P: Pressure in mbar.
- vmr: volume mixing ratio in parts per million.
- Tg: Table temperature in K.
- : saturation partial pressure over liquid water at a given temperature.
- : saturation partial pressure over ice at a given temperature.
- Mw = 18.0160 (molecular weight of water).
- Md = 43.3400 (molecular weight of dry air on Mars).
- W = water mass mixing ratio.
3. Materials and Methods
3.1. SpaceQ Chamber
3.2. Salts and Mars Regolith Simulant
3.3. Experimental Procedure
4. Results
4.1. Experiment 1
4.2. Experiment 2
4.3. Experiment 3
5. Discussion
6. Conclusions, Implications, and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martín-Torres, F.J.; Zorzano, M.-P.; Valentín-Serrano, P.; Harri, A.-M.; Genzer, M.; Kemppinen, O.; Rivera-Valentin, E.G.; Jun, I.; Wray, J.; Bo Madsen, M.; et al. Transient Liquid Water and Water Activity at Gale Crater on Mars. Nat. Geosci. 2015, 8, 357–361. [Google Scholar] [CrossRef]
- Pollack, J.B.; Colburn, D.; Kahn, R.; Hunter, J.; Van Camp, W.; Carlston, C.E.; Wolf, M.R. Properties of Aerosols in the Martian Atmosphere, as Inferred from Viking Lander Imaging Data. J. Geophys. Res. 1977, 82, 4479–4496. [Google Scholar] [CrossRef]
- Jones, K.L.; Arvidson, R.E.; Guinness, E.A.; Bragg, S.L.; Wall, S.D.; Carlston, C.E.; Pidek, D.G. One Mars Year: Viking Lander Imaging Observations. Science 1979, 204, 799–806. [Google Scholar] [CrossRef]
- Levin, G.V.; Levin, R.L. Liquid Water and Life on Mars. In Instruments, Methods, and Missions for Astrobiology; International Society for Optics and Photonics: Bellingham, WA, USA, 1998; Volume 3441. [Google Scholar]
- Savijärvi, H.; Paton, M.; Harri, A.-M. New Column Simulations for the Viking Landers: Winds, Fog, Frost, Adsorption? Icarus 2018, 310, 48–53. [Google Scholar] [CrossRef]
- Hecht, M.H. Metastability of Liquid Water on Mars. Icarus 2002, 156, 373–386. [Google Scholar] [CrossRef]
- Kuznetz, L.H.; Gan, D.C. On the Existence and Stability of Liquid Water on the Surface of Mars Today. Astrobiology 2002, 2, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Davy, R.; Davis, J.A.; Taylor, P.A.; Lange, C.F.; Weng, W.; Whiteway, J.; Gunnlaugson, H.P. Initial Analysis of Air Temperature and Related Data from the Phoenix MET Station and Their Use in Estimating Turbulent Heat Fluxes. J. Geophys. Res. Planets 2010, 115. [Google Scholar] [CrossRef]
- Morgan, P.; Smrekar, S.E.; Lorenz, R.; Grott, M.; Kroemer, O.; Müller, N. Potential Effects of Surface Temperature Variations and Disturbances and Thermal Convection on the Mars InSight HP3 Heat-Flow Determination. Space Sci. Rev. 2017, 211, 277–313. [Google Scholar] [CrossRef]
- Ingersoll, A.P. Mars: Occurrence of Liquid Water. Science 1970, 168, 972–973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, B.C.; Van Hart, D.C. The Salts of Mars. Icarus 1981, 45, 370–378. [Google Scholar] [CrossRef]
- Brass, G.W. Stability of Brines on Mars. Icarus 1980, 42, 20–28. [Google Scholar] [CrossRef]
- Haberle, R.M.; Mckay, C.P.; Schaeffer, J.; Cabrol, N.A.; Grin, E.A.; Zent, A.P.; Quinn, R. On the possibility of liquid water on present-day Mars. J. Geophys. Res. Planets 2001, 106, 23317–23326. [Google Scholar] [CrossRef]
- Chevrier, V.F.; Altheide, T.S. Low Temperature Aqueous Ferric Sulfate Solutions on the Surface of Mars. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Zorzano, M.P.; Mateo-Martí, E.; Prieto-Ballesteros, O.; Osuna, S.; Renno, N. Stability of Liquid Saline Water on Present Day Mars. Geophys. Res. Lett. 2009, 36, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Gough, R.V.; Chevrier, V.F.; Tolbert, M.A. Formation of Aqueous Solutions on Mars via Deliquescence of Chloride-Perchlorate Binary Mixtures. Earth Planet. Sci. Lett. 2014, 393, 73–82. [Google Scholar] [CrossRef]
- Rennó, N.O.; Bos, B.J.; Catling, D.; Clark, B.C.; Drube, L.; Fisher, D.; Goetz, W.; Hviid, S.F.; Keller, H.U.; Kok, J.F.; et al. Possible Physical and Thermodynamical Evidence for Liquid Water at the Phoenix Landing Site. J. Geophys. Res. E Planets 2009, 114, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Nuding, D.L.; Davis, R.D.; Gough, R.V.; Tolbert, M.A. The Aqueous Stability of a Mars Salt Analog: Instant Mars. J. Geophys. Res. Planets 2015, 120, 588–598. [Google Scholar] [CrossRef]
- Fischer, E.; Martínez, G.M.; Renn, N.O. Formation and Persistence of Brine on Mars: Experimental Simulations throughout the Diurnal Cycle at the Phoenix Landing Site. Astrobiology 2016, 16, 937–948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinz, J.; Schulze-Makuch, D.; Kounaves, S.P. Deliquescence-Induced Wetting and RSL-like Darkening of a Mars Analogue Soil Containing Various Perchlorate and Chloride Salts. Geophys. Res. Lett. 2016, 43, 4880–4884. [Google Scholar] [CrossRef] [Green Version]
- Nikolakakos, G.; Whiteway, J.A. Laboratory Study of Adsorption and Deliquescence on the Surface of Mars. Icarus 2018, 308, 221–229. [Google Scholar] [CrossRef]
- Primm, K.M.; Gough, R.V.; Wong, J.; Rivera-Valentin, E.G.; Martinez, G.M.; Hogancamp, J.V.; Archer, P.D.; Ming, D.W.; Tolbert, M.A. The Effect of Mars-Relevant Soil Analogs on the Water Uptake of Magnesium Perchlorate and Implications for the Near-Surface of Mars. J. Geophys. Res. Planets 2018, 123, 2076–2088. [Google Scholar] [CrossRef]
- Martínez, G.M.; Renno, N.O. Water and Brines on Mars: Current Evidence and Implications for MSL. Space Sci. Rev. 2013, 175, 29–51. [Google Scholar] [CrossRef] [Green Version]
- Davila, A.F.; Duport, L.G.; Melchiorri, R.; Jänchen, J.; Valea, S.; De Los Rios, A.; Fairén, A.G.; Möhlmann, D.; McKay, C.P.; Ascaso, C.; et al. Hygroscopic Salts and the Potential for Life on Mars. Astrobiology 2010, 10, 617–628. [Google Scholar] [CrossRef] [Green Version]
- McEwen, A.S.; Ojha, L.; Dundas, C.M.; Mattson, S.S.; Byrne, S.; Wray, J.J.; Cull, S.C.; Murchie, S.L.; Thomas, N.; Gulick, V.C. Seasonal Flows on Warm Martian Slopes. Science 2011, 333, 740–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera-Valentín, E.G.; Chevrier, V.F.; Soto, A.; Martínez, G. Distribution and Habitability of (Meta)Stable Brines on Present-Day Mars. Nat. Astron. 2020, 4, 756–761. [Google Scholar] [CrossRef] [PubMed]
- Henderson, J.A.; Lucas, J.S. Adsorption on the Martian Regolith. Nature 1971, 232, 655–657. [Google Scholar] [CrossRef] [PubMed]
- Fanale, F.P.; Cannon, W.A. Exchange of Adsorbed H2O and CO2 between the Regolith and Atmosphere of Mars Caused by Changes in Surface Insolation. J. Geophys. Res. 1974, 79, 3397–3402. [Google Scholar] [CrossRef]
- Jakosky, B.M.; Zent, A.P.; Zurek, R.W. The Mars Water Cycle: Determining the Role of Exchange with the Regolith. Icarus 1997, 130, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Schorghofer, N.; Aharonson, O. Stability and Exchange of Subsurface Ice on Mars. J. Geophys. Res. E Planets 2005, 110, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Bryson, K.L.; Chevrier, V.; Sears, D.W.G.; Ulrich, R. Stability of Ice on Mars and the Water Vapor Diurnal Cycle: Experimental Study of the Sublimation of Ice through a Fine-Grained Basaltic Regolith. Icarus 2008, 196, 446–458. [Google Scholar] [CrossRef]
- Chevrier, V.; Ostrowski, D.R.; Sears, D.W.G. Experimental Study of the Sublimation of Ice through an Unconsolidated Clay Layer: Implications for the Stability of Ice on Mars and the Possible Diurnal Variations in Atmospheric Water. Icarus 2008, 196, 459–476. [Google Scholar] [CrossRef]
- Meslin, P.-Y.; Gasnault, O.; Forni, O.; Schröder, S.; Cousin, A.; Berger, G.; Clegg, S.M.; Lasue, J.; Maurice, S.; Sautter, V.; et al. Soil Diversity and Hydration at Gale Crater, Mars. Science 2013, 341, 1238670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massé, M.; Conway, S.J.; Gargani, J.; Patel, M.R.; Pasquon, K.; McEwen, A.; Carpy, S.; Chevrier, V.; Balme, M.R.; Ojha, L.; et al. Transport Processes Induced by Metastable Boiling Water under Martian Surface Conditions. Nat. Geosci. 2016, 9, 425–428. [Google Scholar] [CrossRef]
- Chittenden, J.D.; Chevrier, V.; Roe, L.A.; Bryson, K.; Pilgrim, R.; Sears, D.W.G. Experimental Study of the Effect of Wind on the Stability of Water Ice on Mars. Icarus 2008, 196, 477–487. [Google Scholar] [CrossRef]
- Martín-Torres, J.; Zorzano, M.-P.; Soria-Salinas, Á.; Nazarious, M.I.; Konatham, S.; Mathanlal, T.; Ramachandran, A.V.; Ramírez-Luque, J.-A.; Mantas-Nakhai, R. The HABIT (HabitAbility: Brine Irradiation and Temperature) Environmental Instrument for the ExoMars 2022 Surface Platform. Planet. Space Sci. 2020, 190, 104968. [Google Scholar] [CrossRef]
- Rummel, J.D.; Beaty, D.W.; Jones, M.A.; Bakermans, C.; Barlow, N.G.; Boston, P.J.; Chevrier, V.F.; Clark, B.C.; de Vera, J.-P.P.; Gough, R.V.; et al. A New Analysis of Mars “Special Regions”: Findings of the Second MEPAG Special Regions Science Analysis Group (SR-SAG2). Astrobiology 2014, 14, 887–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McConnochie, T.H.; Smith, M.D.; Wolff, M.J.; Bender, S.; Lemmon, M.; Wiens, R.C.; Maurice, S.; Gasnault, O.; Lasue, J.; Meslin, P.-Y.; et al. Retrieval of Water Vapor Column Abundance and Aerosol Properties from ChemCam Passive Sky Spectroscopy. Icarus 2018, 307, 294–326. [Google Scholar] [CrossRef] [Green Version]
- Harri, A.-M.; Genzer, M.; Kemppinen, O.; Gomez-Elvira, J.; Haberle, R.; Polkko, J.; Savijärvi, H.; Rennó, N.; Rodriguez-Manfredi, J.A.; Schmidt, W.; et al. Mars Science Laboratory Relative Humidity Observations: Initial Results. J. Geophys. Res. Planets 2014, 119, 2132–2147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobrado, J.M. Mimicking the Martian Hydrological Cycle: A Set-Up to Introduce Liquid Water in Vacuum. Sensors 2020, 20, 6150. [Google Scholar] [CrossRef]
- Wu, Z.; Ling, Z.; Zhang, J.; Fu, X.; Liu, C.; Xin, Y.; Li, B.; Qiao, L. A Mars Environment Chamber Coupled with Multiple In Situ Spectral Sensors for Mars Exploration. Sensors 2021, 21, 2519. [Google Scholar] [CrossRef]
- Vakkada Ramachandran, A.; Nazarious, M.I.; Mathanlal, T.; Zorzano, M.-P.; Martín-Torres, J. Space Environmental Chamber for Planetary Studies. Sensors 2020, 20, 3996. [Google Scholar] [CrossRef] [PubMed]
- Nazarious, M.I.; AU-Ramachandran, A.V.; Zorzano, M.P.; Martin-Torres, J. Measuring Electrical Conductivity to Study the Formation of Brines Under Martian Conditions. JoVE 2021, 173, e61217. [Google Scholar] [CrossRef]
- Shirke, Y.M.; Abou-Elanwar, A.M.; Choi, W.K.; Lee, H.; Hong, S.U.; Lee, H.K.; Jeon, J.D. Influence of Nitrogen/Phosphorus-Doped Carbon Dots on Polyamide Thin Film Membranes for Water Vapor/N2 Mixture Gas Separation. RSC Adv. 2019, 9, 32121–32129. [Google Scholar] [CrossRef] [Green Version]
- Allen, C.C.; Jager, K.M.; Morris, R.V.; Lindstrom, D.J.; Lindstrom, M.M.; Lockwood, J.P. JSC MARS-1: A Martian Soil Simulant; American Society of Civil Engineers: Reston, VA, USA, 1998; pp. 469–476. [Google Scholar] [CrossRef]
- Nørnberg, P.; Gunnlaugsson, H.P.; Merrison, J.P.; Vendelboe, A.L. Salten Skov I: A Martian Magnetic Dust Analogue. Planet. Space Sci. 2009, 57, 628–631. [Google Scholar] [CrossRef]
- Gouache, T.P.; Patel, N.; Brunskill, C.; Scott, G.P.; Saaj, C.M.; Matthews, M.; Cui, L. Soil Simulant Sourcing for the ExoMars Rover Testbed. Planet. Space Sci. 2011, 59, 779–787. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.; Li, X.; Wang, S.; Li, S.; Spring, N.; Tang, H.; Li, Y.; Feng, J. JMSS-1: A New Martian Soil Simulant. Earth Planets Space 2015, 67, 72. [Google Scholar] [CrossRef] [Green Version]
- Cannon, K.M.; Britt, D.T.; Smith, T.M.; Fritsche, R.F.; Batcheldor, D. Mars Global Simulant MGS-1: A Rocknest-Based Open Standard for Basaltic Martian Regolith Simulants. Icarus 2019, 317, 470–478. [Google Scholar] [CrossRef] [Green Version]
- Ladino, L.A.; Abbatt, J.P.D. Laboratory Investigation of Martian Water Ice Cloud Formation Using Dust Aerosol Simulants. J. Geophys. Res. Planets 2013, 118, 14–25. [Google Scholar] [CrossRef]
- Nazarious, M.I.; Ramachandran, A.V.; Zorzano, M.-P.; Martin-Torres, J. Calibration and Preliminary Tests of the Brine Observation Transition To Liquid Experiment on HABIT/ExoMars 2020 for Demonstration of Liquid Water Stability on Mars. Acta Astronaut. 2019, 162, 497–510. [Google Scholar] [CrossRef]
- Martínez, G.M.; Rennó, N.; Fischer, E.; Borlina, C.S.; Hallet, B.; de la Torre Juárez, M.; Vasavada, A.R.; Ramos, M.; Hamilton, V.; Gomez-Elvira, J.; et al. Surface Energy Budget and Thermal Inertia at Gale Crater: Calculations from Ground-Based Measurements. J. Geophys. Res. Planets 2014, 119, 1822–1838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altheide, T.; Chevrier, V.; Nicholson, C.; Denson, J. Experimental Investigation of the Stability and Evaporation of Sulfate and Chloride Brines on Mars. Earth Planet. Sci. Lett. 2009, 282, 69–78. [Google Scholar] [CrossRef]
- Vakkada Ramachandran, A.; Zorzano, M.-P.; Martin-Torres, J. Numerical Heat Transfer Study of a Space Environmental Testing Facility Using COMSOL Multiphysics. Therm. Sci. Eng. Prog. 2021. Under Review (Unpublished). [Google Scholar]
- Smith, M.D. The Annual Cycle of Water Vapor on Mars as Observed by the Thermal Emission Spectrometer. J. Geophys. Res. Planets 2002, 107, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Fedorova, A.; Korablev, O.; Bertaux, J.-L.; Rodin, A.; Kiselev, A.; Perrier, S. Mars Water Vapor Abundance from SPICAM IR Spectrometer: Seasonal and Geographic Distributions. J. Geophys. Res. Planets 2006, 111. [Google Scholar] [CrossRef]
- Jakosky, B.M.; Brain, D.; Chaffin, M.; Curry, S.; Deighan, J.; Grebowsky, J.; Halekas, J.; Leblanc, F.; Lillis, R.; Luhmann, J.G.; et al. Loss of the Martian Atmosphere to Space: Present-Day Loss Rates Determined from MAVEN Observations and Integrated Loss through Time. Icarus 2018, 315, 146–157. [Google Scholar] [CrossRef]
- Dong, C.; Lee, Y.; Ma, Y.; Lingam, M.; Bougher, S.; Luhmann, J.; Curry, S.; Toth, G.; Nagy, A.; Tenishev, V.; et al. Modeling Martian Atmospheric Losses over Time: Implications for Exoplanetary Climate Evolution and Habitability. Astrophys. J. 2018, 859, L14. [Google Scholar] [CrossRef] [Green Version]
- Newman, C.E.; Gómez-Elvira, J.; Marin, M.; Navarro, S.; Torres, J.; Richardson, M.I.; Battalio, J.M.; Guzewich, S.D.; Sullivan, R.; Torre, M.; et al. Winds Measured by the Rover Environmental Monitoring Station (REMS) during the Mars Science Laboratory (MSL) Rover’s Bagnold Dunes Campaign and Comparison with Numerical Modeling Using MarsWRF. Icarus 2017, 291, 203–231. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, Z.; Wang, H. Characteristics of Dew Formation in the Semi-Arid Loess Plateau of Central Shaanxi Province, China. Water 2019, 11, 126. [Google Scholar] [CrossRef] [Green Version]
- Trainer, M.G.; Wong, M.H.; McConnochie, T.H.; Franz, H.B.; Atreya, S.K.; Conrad, P.G.; Lefèvre, F.; Mahaffy, P.R.; Malespin, C.A.; Manning, H.L.K.; et al. Seasonal Variations in Atmospheric Composition as Measured in Gale Crater, Mars. J. Geophys. Res. Planets 2019, 124, 3000–3024. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Sam, L.; Martín-Torres, F.J.; Zorzano, M.-P. Are Slope Streaks Indicative of Global-Scale Aqueous Processes on Contemporary Mars? Rev. Geophys. 2019, 57, 48–77. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Sam, L.; Martín-Torres, F.J.; Zorzano, M.P. Discovery of Recurring Slope Lineae Candidates in Mawrth Vallis, Mars. Sci. Rep. 2019, 9, 2040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tebolt, M.; Levy, J.; Goudge, T. Slope, elevation, and thermal inertia trends of martian recurring slope lineae initiation and termination points: Multiple possible processes occurring on coarse, sandy slopes. Icarus 2019, 338, 113536. [Google Scholar] [CrossRef]
Experiment 1 (Salt + SAP) | Experiment 2 MMS + Salt) | Experiment 3 (Salt + SAP) | |||||||
---|---|---|---|---|---|---|---|---|---|
wt% | Mass (g) | Residence Time | wt% | Mass (g) | Residence Time | wt% | Mass (g) | Residence Time | |
Calcium chloride (CaCl2) | 47% | 1.06 g | 50% | 0.82 g | 85% | 1.91 g | |||
Ferric sulphate Fe2(SO4)3 | 32% | 0.71 g | 18% | 0.3 g | 42% | 0.95 g | |||
Magnesium perchlorate Mg (CslO4)2 | 41% | 0.93 g | 36% | 0.59 g | 68% | 1.53 g | |||
Sodium-perchlorate (NaClO4) | 37% | 0.83 g | 30% | 0.49 g | 46% | 1.03 g | |||
Pure liquid water on the table | 0.73 g | 3.5 h | 0.95 g | 4.5 h | 0 g | 1 h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vakkada Ramachandran, A.; Zorzano, M.-P.; Martín-Torres, J. Experimental Investigation of the Atmosphere-Regolith Water Cycle on Present-Day Mars. Sensors 2021, 21, 7421. https://doi.org/10.3390/s21217421
Vakkada Ramachandran A, Zorzano M-P, Martín-Torres J. Experimental Investigation of the Atmosphere-Regolith Water Cycle on Present-Day Mars. Sensors. 2021; 21(21):7421. https://doi.org/10.3390/s21217421
Chicago/Turabian StyleVakkada Ramachandran, Abhilash, María-Paz Zorzano, and Javier Martín-Torres. 2021. "Experimental Investigation of the Atmosphere-Regolith Water Cycle on Present-Day Mars" Sensors 21, no. 21: 7421. https://doi.org/10.3390/s21217421
APA StyleVakkada Ramachandran, A., Zorzano, M.-P., & Martín-Torres, J. (2021). Experimental Investigation of the Atmosphere-Regolith Water Cycle on Present-Day Mars. Sensors, 21(21), 7421. https://doi.org/10.3390/s21217421