Multiband Ambient RF Energy Harvester with High Gain Wideband Circularly Polarized Antenna toward Self-Powered Wireless Sensors
Abstract
:1. Introduction
2. Antenna Array Design
2.1. Wideband Dual-Dipole Antenna Element Design
2.2. Hybrid Feeding Network
2.3. Wideband Circularly Polarized Antenna
3. Multiband Ambient RF Energy Harvester Using the Proposed Antenna
3.1. Quadplexer Design
3.2. Rectifiers Design and Full Testing System
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jian, L.; Okada, H.; Itoh, T.; Harada, T.; Maeda, R. Toward the World Smallest Wireless Sensor Nodes with Ultralow Power Consumption. IEEE Sens. J. 2014, 14, 2035–2041. [Google Scholar] [CrossRef]
- Sun, H.; Guo, Y.; He, M.; Zhong, Z. A Dual-Band Rectenna Using Broadband Yagi Antenna Array for Ambient RF Power Harvesting. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 918–921. [Google Scholar] [CrossRef]
- Piñuela, M.; Mitcheson, P.D.; Lucyszyn, S. Ambient RF Energy Harvesting in Urban and Semi-Urban Environments. IEEE Trans. Microw. Theory Tech. 2013, 61, 2715–2726. [Google Scholar] [CrossRef]
- Shi, Y.; Jing, J.; Fan, Y.; Yang, L.; Wang, M. Design of a novel compact and efficient rectenna for WIFI energy harvesting. Prog. Electromagn. Res. C 2018, 83, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Chuma, E.; Iano, Y.; Bravo-Roger, L.; De la Torre Rodríguez, L.; Sanchez-Soriano, M. Compact Rectenna Based on a Fractal Geometry with a High Conversion Energy Efficiency per Area. IET Microw. Antennas Propag. 2017, 12, 173–178. [Google Scholar] [CrossRef]
- Chang, M.-C.; Weng, W.-C.; Chen, W.-H.; Li, T.-Y. A Wideband Planar Rectenna for WLAN Wireless Power Transmission. In Proceedings of the 2017 IEEE Wireless Power Transfer Conference (WPTC), Taipei, Taiwan, 10–12 May 2017; pp. 1–3. [Google Scholar]
- Dardeer, O.M.A.; Elsadek, H.A.; Abdallah, E.A. Compact Broadband Rectenna for Harvesting RF Energy in WLAN and WiMAX Applications. In Proceedings of the 2019 International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, Egypt, 2–4 February 2019; pp. 292–296. [Google Scholar]
- Shen, S.; Chiu, C.-Y.; Murch, R.D. A Dual-Port Triple-Band L-Probe Microstrip Patch Rectenna for Ambient RF Energy Harvesting. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 3071–3074. [Google Scholar] [CrossRef]
- Singh, N.; Kanaujia, B.; Beg, M.; Siddique, M.; Kumar, S.; Khan, T. A Dual Polarized Multiband Rectenna for RF Energy Harvesting. AEU-Int. J. Electron. Commun. 2018, 93, 123–131. [Google Scholar] [CrossRef]
- Zahra, W.; Djerafi, T. Ambient RF Energy Harvesting for Dual-Band Frequencies below 6 GHz. In Proceedings of the 2018 IEEE Wireless Power Transfer Conference (WPTC), Montreal, QC, Canada, 3–7 June 2018; pp. 1–2. [Google Scholar]
- Vu, H.S.; Nguyen, N.; Ha-Van, N.; Seo, C.; Thuy Le, M. Multiband Ambient RF Energy Harvesting for Autonomous IoT Devices. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 1189–1192. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, P.; Chen, S.; Wang, G.; Chen, X. A Dual-Frequency Circularly Polarized Rectenna for 2.45 and 5.8 GHz Wireless Power Transmission. In Proceedings of the 2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP), Auckland, New Zealand, 5–8 August 2018. [Google Scholar] [CrossRef]
- Mansour, M.M.; Kanaya, H. Novel L-Slot Matching Circuit Integrated with Circularly Polarized Rectenna for Wireless Energy Harvesting. Electronics 2019, 8, 651. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.; Zhang, Y.; Chiu, C.-Y.; Murch, R. An Ambient RF Energy Harvesting System Where the Number of Antenna Ports Is Dependent on Frequency. IEEE Trans. Microw. Theory Tech. 2019, 67, 3821–3832. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, W.; Chen, X. Design of a Compact Conformal Circularly Polarized Rectenna. In Proceedings of the 2019 International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), Qingdao, China, 18–20 September 2019; pp. 1–3. [Google Scholar]
- Wang, X.-C.; Sun, L.; Lu, X.-L.; Liang, S.; Lu, W.-Z. Single-Feed Dual-Band Circularly Polarized Dielectric Resonator Antenna for CNSS Applications. IEEE Trans. Antennas Propag. 2017, 65, 4283–4287. [Google Scholar] [CrossRef]
- Zhou, C.F.; Cheung, S.W. A Wideband CP Crossed Slot Antenna Using 1- $\lambda $ Resonant Mode With Single Feeding. IEEE Trans. Antennas Propag. 2017, 65, 4268–4273. [Google Scholar] [CrossRef]
- Lee, C.S.; Fan, Y.; Ezzat, M. Single-Feed Circularly Polarized Microstrip Antenna With Bethe Holes on the Radiating Patch. IEEE Trans. Antennas Propag. 2020, 68, 4935–4938. [Google Scholar] [CrossRef]
- Saini, R.K.; Dwari, S.; Mandal, M.K. CPW-Fed Dual-Band Dual-Sense Circularly Polarized Monopole Antenna. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2497–2500. [Google Scholar] [CrossRef]
- Luo, Y.; Chu, Q.-X.; Bornemann, J. Enhancing Cross-Polarization Discrimination or Axial Ratio Beamwidth of Diagonally Dual or Circularly Polarized Base Station Antennas by Using Vertical Parasitic Elements. IET Microw. Antennas Propag. 2017, 11, 1190–1196. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.-H.; Zhu, H.; Ding, C.; Guo, Y.J. Wideband Planarized Dual-Linearly-Polarized Dipole Antenna and Its Integration for Dual-Circularly-Polarized Radiation. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2289–2293. [Google Scholar] [CrossRef]
- Wen, L.; Gao, S.; Luo, Q.; Hu, W.; Sanz-Izquierdo, B. Design of a Wideband Dual-Feed Circularly Polarized Antenna for Different Axial Ratio Requirements. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 88–92. [Google Scholar] [CrossRef]
- Mohammadi-Asl, S.; Nourinia, J.; Ghobadi, C.; Majidzadeh, M. Wideband Compact Circularly Polarized Sequentially Rotated Array Antenna with Sequential-Phase Feed Network. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 3176–3179. [Google Scholar] [CrossRef]
- Bui, T.D.; Nguyen, Q.C.; Le, M.T. Novel Wideband Circularly Polarized Antenna for Wireless Applications. In Proceedings of the 2017 IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpur, Malaysia, 13–16 November 2017; pp. 430–433. [Google Scholar]
- Zhang, Z.-Y.; Zuo, S.; Zhao, Y.; Ji, L.-Y.; Fu, G. Broadband Circularly Polarized Bowtie Antenna Array Using Sequentially Rotated Technique. IEEE Access 2018, 6, 12769–12774. [Google Scholar] [CrossRef]
- Dardeer, O.M.A.; Elsadek, H.A.; Abdallah, E.A. 2 × 2 Circularly Polarized Antenna Array for RF Energy Harvesting in IoT System. In Proceedings of the 2018 IEEE Global Conference on Internet of Things (GCIoT), Alexandria, Egypt, 5–7 December 2018; pp. 1–6. [Google Scholar]
- Cao, T.M.; Phuong, T.H.T.; Bui, T.D. Circularly Polarized Antenna Array Based on Hybrid Couplers for 5G Devices. Bull. Electr. Eng. Inform. 2021, 10, 1446–1454. [Google Scholar] [CrossRef]
- Li, R.; Wu, T.; Pan, B.; Lim, K.; Laskar, J.; Tentzeris, M.M. Equivalent-Circuit Analysis of a Broadband Printed Dipole with Adjusted Integrated Balun and an Array for Base Station Applications. IEEE Trans. Antennas Propag. 2009, 57, 2180–2184. [Google Scholar] [CrossRef] [Green Version]
- Quirarte, J.L.R.; Starski, J.P. Novel Schiffman Phase Shifters. IEEE Trans. Microw. Theory Tech. 1993, 41, 9–14. [Google Scholar] [CrossRef]
- Cao, T.M.; Vu, H.S.; Bui, T.D.; Le, M.T. Left Hand and Right Hand Circularly Polarized Antenna for 5G Devices. In Industrial Networks and Intelligent Systems; Vo, N.-S., Hoang, V.-P., Vien, Q.-T., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 119–127. [Google Scholar]
- Kim, S.; Kim, J.-I. A Circularly Polarized High-Gain Planar 2 × 2 Dipole-Array Antenna Fed by a 4-Way Gysel Power Divider for WLAN Applications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1051–1055. [Google Scholar] [CrossRef]
- Dinh, M.Q.; Le, M.T. Triplexer-Based Multiband Rectenna for RF Energy Harvesting from 3G/4G and Wi-Fi. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 1094–1097. [Google Scholar] [CrossRef]
- Nguyen, N.; Nguyen, Q.C.; Le, M.T. A Novel Autonomous Wireless Sensor Node for IoT Applications. TELKOMNIKA Telecommun. Comput. Electron. Control 2019, 17, 2389–2399. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Tran, M.N.; Le, Q.H.; Vu, T.A.; Nguyen, Q.C.; Nguyen, D.D.; Le, M.T. Smart Shoe Based on Battery-Free Bluetooth Low Energy Sensor. In Industrial Networks and Intelligent Systems; Vo, N.-S., Hoang, V.-P., Vien, Q.-T., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 156–166. [Google Scholar]
- Boursianis, A.D.; Papadopoulou, M.S.; Koulouridis, S.; Rocca, P.; Georgiadis, A.; Tentzeris, M.M.; Goudos, S.K. Triple-Band Single-Layer Rectenna for Outdoor RF Energy Harvesting Applications. Sensors 2021, 21, 3460. [Google Scholar] [CrossRef] [PubMed]
Para. | Val. (mm) | Para. | Val. (mm) | Para. | Val. (mm) |
---|---|---|---|---|---|
Ld | 80 | Wg | 8.85 | Ws | 2.3 |
Lm | 6 | Wm | 18 | a | 18 |
Hd | 21.5 | Wd | 2.9 | We | 2.9 |
Hm | 20 | wm | 1.8 | L | 38 |
Wh | 2 | He | 19 | w | 1.5 |
Ref. | Freq. f0 (GHz) | BW (%) | 3 dB-AR BW (%) | Dim. (λ03) | Gain (dBi) |
---|---|---|---|---|---|
[23] | 7 | 54.3 | 42.1 | 0.49 × 0.49 × 0.04 | 11.3 |
[24] | 5.8 | 48.3 | 12 | 0.9 × 0.9 × 0.38 | 9.8 |
[25] | 1.45 | 46 | N/A | 1.93 × 1.93 × 0.3 | 12.2 |
[26] | 2.45 | N/A | 31 | 1.21 × 1.21 × 0.01 | 5.7 |
[30] | 3.75 | 37.3 | 25.4 | 1.06 × 1.06 × 0.5 | 9.52 |
[31] | 3.3 | 71 | N/A | 1.64 × 1.64 × 0.22 | 9.63 |
This work | 2.2 | 71.2 | 63.6 | 0.73 × 0.73 × 0.51 | 9.9 |
Ref. | Input Power | Freq. Band (GHz) | Antenna polarization | Max.Eff | Eff. (−10 dBm) | Min. Load |
---|---|---|---|---|---|---|
[8] | −35~−10 dBm | 0.91, 1.85, 2.1 | Dual-porlarized | 40%, 33%, 25% | 40% | 5 KΩ |
[9] | −10~30 dBm | 4.75, 5.42, 5.76, 6.4, 6.9, 7.61 | Dual-porlarized | 84% | 4% | 3 KΩ |
[11] | −25~−5 dBm | 0.84, 1.86, 2.1, 2.45 | Linear | 30%, 22%, 33%, 16.5% | 22% | N/A |
[35] | −10~10 dBm | 0.866, 1.841, 1.957 | Linear | 52%, 27%, 29% | 20% | 14 KΩ |
This work | −20~−6 dBm | 1.8, 2.1, 2.45, 2.6 | CP | 27%, 26%, 25.5%, 27.5% | 23% | 800 Ω |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, H.Q.; Le, M.T. Multiband Ambient RF Energy Harvester with High Gain Wideband Circularly Polarized Antenna toward Self-Powered Wireless Sensors. Sensors 2021, 21, 7411. https://doi.org/10.3390/s21217411
Nguyen HQ, Le MT. Multiband Ambient RF Energy Harvester with High Gain Wideband Circularly Polarized Antenna toward Self-Powered Wireless Sensors. Sensors. 2021; 21(21):7411. https://doi.org/10.3390/s21217411
Chicago/Turabian StyleNguyen, Hong Quang, and Minh Thuy Le. 2021. "Multiband Ambient RF Energy Harvester with High Gain Wideband Circularly Polarized Antenna toward Self-Powered Wireless Sensors" Sensors 21, no. 21: 7411. https://doi.org/10.3390/s21217411
APA StyleNguyen, H. Q., & Le, M. T. (2021). Multiband Ambient RF Energy Harvester with High Gain Wideband Circularly Polarized Antenna toward Self-Powered Wireless Sensors. Sensors, 21(21), 7411. https://doi.org/10.3390/s21217411