Detection of Sleep-Disordered Breathing in Patients with Spinal Cord Injury Using a Smartphone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Acquisition System and Experimental Setup
2.3. Signal Processing and Analysis
2.3.1. SpO2 Analysis
2.3.2. Apnea and Hypopnea Detection
2.3.3. Sleep Position Monitoring
2.3.4. Oral vs. Nasal Breathing
2.4. Statistical Analysis
3. Results
3.1. SpO2 Measures
3.2. Apneas and Hypopneas
3.3. Sleep Position
3.4. Oral Breathing
3.5. Correlation with Age, BMI, and Injury Characteristics
4. Discussion
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AASM | American Academy of Sleep Medicine |
AI | Apnea Index |
AIS | American Spinal Injury Association Impairment Scale |
AHI | Apnea–Hypopnea Index |
BMI | Body Mass Index |
CBCT | Cone-Beam Computed Tomography |
CT90 | Cumulative Time with SpO2 below 90% |
CT94 | Cumulative Time with SpO2 below 94% |
FFT | Fast Fourier Transform |
fSampEn | Fixed Sample Entropy |
HI | Hypopnea Index |
mHealth | Mobile Health |
MMP | Modified Mallampati |
ODI | Oxygen Desaturation Index |
PSG | Polysomnography |
RMS | Root Mean Square |
SCI | Spinal Cord Injury |
SD | Standard Deviation |
SDB | Sleep-Disordered Breathing |
SEv | Silence Event |
SNR | Signal-to-Noise Ratio |
SpO2 | Oxygen Saturation |
References
- Aminoff, M.J.; Boller, F.; Swaab, D.F. We spend about one-third of our life either sleeping or attempting to do so. Handb. Clin. Neurol. 2010, 98, 7. [Google Scholar] [CrossRef]
- Ferrie, J.E.; Kumari, M.; Salo, P.; Singh-Manoux, A.; Kivimaki, M. Sleep epidemiology—A rapidly growing field. Int. J. Epidemiol. 2011, 40, 1431–1437. [Google Scholar] [CrossRef] [PubMed]
- Kapur, V.; Strohl, K.P.; Redline, S.; Iber, C.; O’Connor, G.; Nieto, J. Underdiagnosis of Sleep Apnea Syndrome in U.S. Communities. Sleep Breath. 2002, 6, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.P.; Araújo, A.; Vieira, C.; Vasconcelos, F.; Pinto, P.M.; Seixas, B.; Cêrca, B.; Borges, I. Undiagnosed Risk of Obstructive Sleep Apnea in Obese Individuals in a Primary Health Care Context. Acta Med. Port. 2020, 33, 161–165. [Google Scholar] [CrossRef] [Green Version]
- Yoshihisa, A.; Takeishi, Y. Sleep Disordered Breathing and Cardiovascular Diseases. J. Atheroscler. Thromb. 2019, 26, 315–327. [Google Scholar] [CrossRef] [Green Version]
- Durgan, D.J.; Bryan, R.M., Jr. Cerebrovascular Consequences of Obstructive Sleep Apnea. J. Am. Hear. Assoc. 2012, 1, e000091. [Google Scholar] [CrossRef] [Green Version]
- Heinzer, R.; Vat, S.; Marques-Vidal, P.; Marti-Soler, H.; Andries, D.; Tobback, N.; Mooser, V.; Preisig, M.; Malhotra, A.; Waeber, G.; et al. Prevalence of sleep-disordered breathing in the general population: The HypnoLaus study. Lancet Respir. Med. 2015, 3, 310–318. [Google Scholar] [CrossRef] [Green Version]
- Hultén, V.D.T.; Biering-Sørensen, F.; Jørgensen, N.R.; Jennum, P.J. A review of sleep research in patients with spinal cord injury. J. Spinal Cord Med. 2020, 43, 775–796. [Google Scholar] [CrossRef]
- Giannoccaro, M.P.; Moghadam, K.K.; Pizza, F.; Boriani, S.; Maraldi, N.M.; Avoni, P.; Morreale, A.; Liguori, R.; Plazzi, G. Sleep disorders in patients with spinal cord injury. Sleep Med. Rev. 2013, 17, 399–409. [Google Scholar] [CrossRef]
- Biering-Sørensen, F.; Biering-Sørensen, M. Sleep disturbances in the spinal cord injured: An epidemiological questionnaire investigation, including a normal population. Spinal Cord 2001, 39, 505–513. [Google Scholar] [CrossRef] [Green Version]
- Short, D.J.; Stradling, J.R.; Williams, S.J. Prevalence of sleep apnoea in patients over 40 years of age with spinal cord lesions. J. Neurol. Neurosurg. Psychiatry 1992, 55, 1032–1036. [Google Scholar] [CrossRef] [Green Version]
- McEvoy, R.D.; Mykytyn, I.; Sajkov, D.; Flavell, H.; Marshall, R.; Antic, R.; Thornton, A.T. Sleep apnoea in patients with quadriplegia. Thorax 1995, 50, 613–619. [Google Scholar] [CrossRef] [Green Version]
- Cahan, C.; Gothe, B.; Decker, M.J.; Arnold, J.L.; Strohl, K.P. Arterial oxygen saturation over time and sleep studies in quadriplegic patients. Paraplegia 1993, 31, 172–179. [Google Scholar] [CrossRef] [Green Version]
- Stockhammer, E.; Tobón, A.; Michel, F.; Eser, P.; Scheuler, W.; Bauer, W.; Baumberger, M.; Müller, W.; Kakebeeke, T.; Knecht, H.; et al. Characteristics of sleep apnea syndrome in tetraplegic patients. Spinal Cord 2002, 40, 286–294. [Google Scholar] [CrossRef]
- Sankari, A.; Vaughan, S.; Bascom, A.; Martin, J.L.; Badr, M.S. Sleep-Disordered Breathing and Spinal Cord Injury: A State-of-the-Art Review. Chest 2019, 155, 438–445. [Google Scholar] [CrossRef]
- Chiodo, A.E.; Sitrin, R.G.; Bauman, K.A. Sleep disordered breathing in spinal cord injury: A systematic review. J. Spinal Cord Med. 2016, 39, 374–382. [Google Scholar] [CrossRef]
- Sankari, A.; Bascom, A.; Oomman, S.; Badr, M.S. Sleep Disordered Breathing in Chronic Spinal Cord Injury. J. Clin. Sleep Med. 2014, 10, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Philip, P.; Bailly, S.; Benmerad, M.; Micoulaud-Franchi, J.A.; Grillet, Y.; Sapène, M.; Jullian-Desayes, I.; Joyeux-Faure, M.; Tamisier, R.; Pépin, J.L. Self-reported sleepiness and not the apnoea hypopnoea index is the best predictor of sleepiness-related accidents in obstructive sleep apnoea. Sci. Rep. 2020, 10, 16267. [Google Scholar] [CrossRef]
- Netzer, N.C.; Stoohs, R.A.; Netzer, C.M.; Clark, K.; Strohl, K.P. Using the Berlin Questionnaire To Identify Patients at Risk for the Sleep Apnea Syndrome. Ann. Intern. Med. 1999, 131, 485–491. [Google Scholar] [CrossRef]
- Chung, F.; Yegneswaran, B.; Liao, P.; Chung, S.A.; Vairavanathan, S.; Islam, S.; Khajehdehi, A.; Shapiro, C.M. STOP Questionnaire. Anesthesiology 2008, 108, 812–821. [Google Scholar] [CrossRef] [Green Version]
- Dalewski, B.; Kamińska, A.; Syrico, A.; Kałdunska, A.; Pałka, Ł.; Sobolewska, E. The Usefulness of Modified Mallampati Score and CT Upper Airway Volume Measurements in Diagnosing OSA among Patients with Breathing-Related Sleep Disorders. Appl. Sci. 2021, 11, 3764. [Google Scholar] [CrossRef]
- McCrillis, J.M.; Haskell, J.; Haskell, B.S.; Brammer, M.; Chenin, D.; Scarfe, W.C.; Farman, A.G. Obstructive Sleep Apnea and the Use of Cone Beam Computed Tomography in Airway Imaging: A Review. Semin. Orthod. 2009, 15, 63–69. [Google Scholar] [CrossRef]
- Lundstrøm, L.; Vester-Andersen, M.; Møller, A.M.; Charuluxananan, S.; L’Hermite, J.; Wetterslev, J. Poor prognostic value of the modified Mallampati score: A meta-analysis involving 177 088 patients. Br. J. Anaesth. 2011, 107, 659–667. [Google Scholar] [CrossRef] [Green Version]
- Masa, J.F.; Corral, J.; Pereira, R.; Duran-Cantolla, J.; Cabello, M.; Hernández-Blasco, L.; Monasterio, C.; Alonso, A.; Chiner, E.; Rubio, M.; et al. Effectiveness of home respiratory polygraphy for the diagnosis of sleep apnoea and hypopnoea syndrome. Thorax 2011, 66, 567–573. [Google Scholar] [CrossRef] [Green Version]
- Burns, S.P.; Little, J.W.; Hussey, J.; Lyman, P.; Lakshminarayanan, S. Sleep apnea syndrome in chronic spinal cord injury: Associated factors and treatment. Arch. Phys. Med. Rehabil. 2000, 81, 1334–1339. [Google Scholar] [CrossRef]
- Berlowitz, D.; Brown, D.J.; Campbell, D.A.; Pierce, R.J. A Longitudinal Evaluation of Sleep and Breathing in the First Year After Cervical Spinal Cord Injury. Arch. Phys. Med. Rehabil. 2005, 86, 1193–1199. [Google Scholar] [CrossRef]
- Leduc, B.E.; Dagher, J.H.; Mayer, P.; Bellemare, F.; Lepage, Y. Estimated Prevalence of Obstructive Sleep Apnea–Hypopnea Syndrome After Cervical Cord Injury. Arch. Phys. Med. Rehabil. 2007, 88, 333–337. [Google Scholar] [CrossRef]
- Bauman, K.A.; Kurili, A.; Schotland, H.M.; Rodriguez, G.M.; Chiodo, A.E.; Sitrin, R.G. Simplified Approach to Diagnosing Sleep-Disordered Breathing and Nocturnal Hypercapnia in Individuals With Spinal Cord Injury. Arch. Phys. Med. Rehabil. 2016, 97, 363–371. [Google Scholar] [CrossRef]
- Klefbeck, B.; Sternhag, M.; Weinberg, J.; Levi, R.; Hultling, C.; Borg, J. Obstructive sleep apneas in relation to severity of cervical spinal cord injury. Spinal Cord 1998, 36, 621–628. [Google Scholar] [CrossRef] [Green Version]
- Graco, M.; McDonald, L.; Green, S.E.; Jackson, M.L.; Berlowitz, D.J. Prevalence of sleep-disordered breathing in people with tetraplegia—a systematic review and meta-analysis. Spinal Cord 2021, 59, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Patel, N.P.; Rosen, I. Portable Monitors in the Diagnosis of Obstructive Sleep Apnea. Chest 2007, 132, 1672–1677. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Escario, Y.; Ferrer-Lluis, I.; Montserrat, J.M.; Jane, R. Entropy Analysis of Acoustic Signals Recorded With a Smartphone for Detecting Apneas and Hypopneas: A Comparison With a Commercial System for Home Sleep Apnea Diagnosis. IEEE Access 2019, 7, 128224–128241. [Google Scholar] [CrossRef]
- Ferrer-Lluis, I.; Castillo-Escario, Y.; Montserrat, J.M.; Jane, R. Analysis of Smartphone Triaxial Accelerometry for Monitoring Sleep-Disordered Breathing and Sleep Position at Home. IEEE Access 2020, 8, 71231–71244. [Google Scholar] [CrossRef]
- Ferrer-Lluis, I.; Castillo-Escario, Y.; Montserrat, J.; Jané, R. Enhanced Monitoring of Sleep Position in Sleep Apnea Patients: Smartphone Triaxial Accelerometry Compared with Video-Validated Position from Polysomnography. Sensors 2021, 21, 3689. [Google Scholar] [CrossRef]
- Ferrer-Lluis, I.; Castillo-Escario, Y.; Montserrat, J.; Jané, R. SleepPos App: An Automated Smartphone Application for Angle Based High Resolution Sleep Position Monitoring and Treatment. Sensors 2021, 21, 4531. [Google Scholar] [CrossRef]
- Yalciner, G.; Babademez, M.A.; Gul, F. Association of sleep time in supine position with apnea-hypopnea index as evidenced by successive polysomnography. Sleep Breath. 2016, 21, 289–294. [Google Scholar] [CrossRef]
- Oksenberg, A.; Arons, E.; Radwan, H.; Silverberg, D.S. Positional vs Nonpositional Obstructive Sleep Apnea Patients: Anthropomorphic, nocturnal polysomnographic, and multiple sleep latency test data. Chest 1997, 112, 629–639. [Google Scholar] [CrossRef] [Green Version]
- Roberts, T.T.; Leonard, G.R.; Cepela, D.J. Classifications In Brief: American Spinal Injury Association (ASIA) Impairment Scale. Clin. Orthop. Relat. Res. 2017, 475, 1499–1504. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Escario, Y.; Camara, M.A.; Blanco-Almazán, D.; Jane, R. Characterization of microphones for snoring and breathing events analysis in mHealth. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Korea, 11–15 July 2017; IEEE, 2017; pp. 1547–1550. [Google Scholar]
- Nakano, H.; Hirayama, K.; Sadamitsu, Y.; Toshimitsu, A.; Fujita, H.; Shin, S.; Tanigawa, T. Monitoring Sound To Quantify Snoring and Sleep Apnea Severity Using a Smartphone: Proof of Concept. J. Clin. Sleep Med. 2014, 10, 73–78. [Google Scholar] [CrossRef]
- Boll, S.F. Suppression of Acoustic Noise in Speech Using Spectral Subtraction. IEEE Trans. Acoust. 1979, 27, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [Green Version]
- Lake, D.E.; Richman, J.S.; Griffin, M.P.; Moorman, J.R. Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R789–R797. [Google Scholar] [CrossRef] [Green Version]
- Berry, R.B.; Brooks, R.; Gamaldo, C.E.; Harding, S.M.; Marcus, C.L.; Vaughn, B.V. The AASM manual for the scoring of sleep and associated events. Rules Terminol. Tech. Specif. 2012, 176. [Google Scholar]
- Berry, R.B.; Budhiraja, R.; Gottlieb, D.J.; Gozal, D.; Iber, C.; Kapur, V.K.; Marcus, C.L.; Mehra, R.; Parthasarathy, S.; Quan, S.F.; et al. Rules for Scoring Respiratory Events in Sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. J. Clin. Sleep Med. 2012, 8, 597–619. [Google Scholar] [CrossRef] [Green Version]
- Tran, K.; Hukins, C.; Geraghty, T.; Eckert, B.; Fraser, L. Sleep-disordered breathing in spinal cord-injured patients: A short-term longitudinal study. Respirology 2010, 15, 272–276. [Google Scholar] [CrossRef]
- Flavell, H.; Marshall, R.; Thornton, A.T.; Clements, P.L.; Antic, R.; McEvoy, R.D. Hypoxia episodes during sleep in high tetraplegia. Arch. Phys. Med. Rehabil. 1992, 73, 623–627. [Google Scholar]
- Verma, M.; Seto-Poon, M.; Wheatley, J.; Amis, T.C.; Kirkness, J.P. Influence of breathing route on upper airway lining liquid surface tension in humans. J. Physiol. 2006, 574, 859–866. [Google Scholar] [CrossRef]
- Wijesuriya, N.S.; Eckert, D.J.; Jordan, A.S.; Schembri, R.; Lewis, C.; Meaklim, H.; Booker, L.; Brown, D.; Graco, M.; Berlowitz, D.J. A randomised controlled trial of nasal decongestant to treat obstructive sleep apnoea in people with cervical spinal cord injury. Spinal Cord 2019, 57, 579–585. [Google Scholar] [CrossRef]
- Zwillich, C.W.; Pickett, C.; Hanson, F.N.; Weil, J.V. Disturbed sleep and prolonged apnea during nasal obstruction in normal men. Am. Rev. Respir. Dis. 1981, 124, 158–160. [Google Scholar] [CrossRef]
- Lee, S.H.; Choi, J.H.; Shin, C.; Lee, H.M.; Kwon, S.Y.; Lee, S.H. How Does Open-Mouth Breathing Influence Upper Airway Anatomy? Laryngoscope 2007, 117, 1102–1106. [Google Scholar] [CrossRef] [Green Version]
- Jefferson, Y. Mouth breathing: Adverse effects on facial growth, health, academics, and behavior. Gen. Dent. 2010, 58, 18–25. [Google Scholar]
- Gainche, L.; Berlowitz, D.J.; Leguen, M.; Ruehland, W.R.; O’Donoghue, F.J.; Trinder, J.; Graco, M.; Schembri, R.; Eckert, D.J.; Rochford, P.D.; et al. Nasal Resistance Is Elevated in People with Tetraplegia and Is Reduced by Topical Sympathomimetic Administration. J. Clin. Sleep Med. 2016, 12, 1487–1492. [Google Scholar] [CrossRef] [Green Version]
- Braun, S.R.; Giovannoni, R.; Levin, A.B.; Harvey, R.F. Oxygen saturation during sleep in patients with spinal cord injury. Am. J. Phys. Med. 1982, 61, 302–309. [Google Scholar] [CrossRef]
- Berlowitz, D.J.; Spong, J.; Gordon, I.; Howard, M.E.; Brown, D.J. Relationships Between Objective Sleep Indices and Symptoms in a Community Sample of People With Tetraplegia. Arch. Phys. Med. Rehabil. 2012, 93, 1246–1252. [Google Scholar] [CrossRef]
- Jensen, M.P.; Hirsh, A.T.; Molton, I.R.; Bamer, A.M. Sleep problems in individuals with spinal cord injury: Frequency and age effects. Rehabil. Psychol. 2009, 54, 323–331. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Ding, H.; Zhou, H.; Wei, Z.; Liu, L.; Pan, D.; Feng, S. Epidemiology of worldwide spinal cord injury: A literature review. J. Neurorestoratology 2017, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, G.; Bolter, L.; Sluka, R.; Höller, Y.; Bathke, A.C.; Thomschewski, A.; Leis, S.; Lattanzi, S.; Brigo, F.; Trinka, E. Sample sizes and statistical methods in interventional studies on individuals with spinal cord injury: A systematic review. J. Evid.-Based Med. 2019, 12, 200–208. [Google Scholar] [CrossRef] [Green Version]
- Wijesuriya, N.S.; Lewis, C.; Butler, J.E.; Lee, B.; Jordan, A.S.; Berlowitz, D.J.; Eckert, D.J. High nasal resistance is stable over time but poorly perceived in people with tetraplegia and obstructive sleep apnoea. Respir. Physiol. Neurobiol. 2017, 235, 27–33. [Google Scholar] [CrossRef]
Patient ID | Gender | Age (Years) | BMI (kg/m2) | Injury Level | AIS | Months Post-Injury | Etiology |
---|---|---|---|---|---|---|---|
SCI 1 | M | 47 | 24.8 | C4 | A | 6.6 | Traumatic |
SCI 2 | F | 27 | 20.8 | C4 | A | 9.6 | Traumatic |
SCI 3 | M | 18 | 17.3 | C4 | A | 11.9 | Traumatic |
SCI 4 | M | 47 | 22.0 | C4 | C | 3.0 | Traumatic |
SCI 5 | M | 55 | 20.3 | C4 | C | 5.7 | Traumatic |
SCI 6 | M | 45 | 20.7 | C4 | C | 6.7 | Traumatic |
SCI 7 | M | 60 | 23.8 | C4 | D | 2.8 | Traumatic |
SCI 8 | M | 76 | 22.2 | C4 | D | 8.4 | Traumatic |
SCI 9 | M | 31 | 24.2 | C5 | A | 7.7 | Traumatic |
SCI 10 | M | 19 | 23.2 | C5 | C | 3.4 | Non-traumatic |
SCI 11 | M | 46 | 21.0 | C6 | A | 5.0 | Traumatic |
SCI 12 | M | 67 | 23.5 | C6 | A | 6.1 | Traumatic |
SCI 13 | M | 20 | 19.6 | C6 | B | 6.2 | Traumatic |
SCI 14 | M | 38 | 20.6 | C8 | B | 6.2 | Traumatic |
SCI 15 | M | 34 | 21.9 | T7 | B | 1.7 | Traumatic |
SCI 16 | F | 55 | 28.8 | T9 | D | 2.4 | Non-traumatic |
SCI 17 | M | 53 | 28.9 | T10 | B | 3.7 | Traumatic |
SCI 18 | M | 43 | 22.2 | T11 | A | 1.3 | Traumatic |
SCI 19 | F | 38 | 22.3 | T11 | D | 4.1 | Traumatic |
Mean ± SD/ Total | 16 M (84%) 3 F (16%) | 43 ± 16 | 22.5 ± 2.8 | 14 cervical (C4–C8) 5 thoracic (T7–T11) | 7 AIS A 4 AIS B 4 AIS C 4 AIS D | 5.4 ± 2.8 | Traumatic: 17 (89%) Non-traumatic: 2 (11%) |
Patient ID | Awake SpO2 | Median SpO2 | Minimum SpO2 | CT94 (%) | CT90 (%) | ODI (h−1) | AHI (h−1) | AI (h−1) | HI (h−1) | Time in Events (%) | Oral Breathing (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
SCI 1 | 98 | 95 | 78 | 24.33 | 3.73 | 40.44 | 42.56 | 11.55 | 31.01 | 28.58 | 11.42 |
SCI 2 | 98 | 98 | 76 | 0.61 | 0.17 | 10.03 | 12.09 | 5.62 | 6.47 | 8.65 | 67.91 |
SCI 3 | 98 | 95 | 78 | 23.30 | 3.18 | 14.82 | 13.85 | 9.84 | 4.01 | 6.76 | 31.03 |
SCI 4 | 95 | 95 | 54 | 32.15 | 15.21 | 59.59 | 60.05 | 30.40 | 29.64 | 31.24 | 46.57 |
SCI 5 | 95 | 94 | 73 | 44.11 | 5.55 | 17.66 | 15.59 | 3.29 | 12.30 | 7.21 | 12.11 |
SCI 6 | 99 | 92 | 74 | 70.38 | 24.41 | 20.83 | 24.84 | 8.93 | 15.91 | 19.68 | 8.81 |
SCI 7 | 95 | 95 | 83 | 26.73 | 1.98 | 43.00 | 45.85 | 21.32 | 24.54 | 37.29 | 22.73 |
SCI 8 | 92 | 90 | 81 | 98.41 | 39.04 | 25.38 | 29.43 | 9.29 | 20.14 | 19.91 | 61.64 |
SCI 9 | 98 | 96 | 85 | 7.05 | 0.06 | 14.06 | 14.54 | 3.60 | 10.93 | 8.10 | 44.77 |
SCI 10 | 96 | 93 | 61 | 69.88 | 0.82 | 14.00 | 8.50 | 1.87 | 6.62 | 3.46 | 63.72 |
SCI 11 | 98 | 95 | 81 | 4.95 | 0.45 | 11.49 | 11.10 | 9.64 | 1.45 | 5.20 | 52.63 |
SCI 12 | 98 | 94 | 74 | 44.35 | 9.87 | 30.74 | 35.19 | 12.20 | 22.99 | 24.58 | 55.87 |
SCI 13 | 99 | 95 | 90 | 13.13 | 0.00 | 9.02 | 8.77 | 1.98 | 6.79 | 6.37 | 36.29 |
SCI 14 | 97 | 95 | 88 | 6.62 | 3.23 | 7.59 | 9.06 | 4.53 | 4.53 | 7.21 | 11.24 |
SCI 15 | 94 | 95 | 88 | 7.20 | 0.15 | 16.09 | 16.33 | 3.87 | 12.46 | 9.20 | 34.79 |
SCI 16 | 94 | 90 | 80 | 89.95 | 37.78 | 26.60 | 30.42 | 10.56 | 19.85 | 21.57 | 63.42 |
SCI 17 | 96 | 95 | 80 | 22.68 | 1.11 | 39.98 | 42.17 | 26.10 | 16.07 | 28.64 | 43.35 |
SCI 18 | 99 | 95 | 89 | 14.75 | 0.05 | 25.01 | 24.89 | 15.13 | 9.76 | 20.32 | 30.75 |
SCI 19 | 95 | 94 | 79 | 44.91 | 1.10 | 22.44 | 28.60 | 15.08 | 13.51 | 19.48 | 12.96 |
Group | Statistic | Awake SpO2 | Median SpO2 | Minimum SpO2 | CT94 (%) | CT90 (%) | ODI (h−1) | AHI (h−1) | AI (h−1) | HI (h−1) | Time in Events (%) | Oral Breathing (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SCI | Mean ± SD | 97 ± 2 | 94 ± 2 | 79 ± 9 | 34 ± 29 | 8 ± 12 | 24 ± 14 | 25 ± 15 | 11 ± 8 | 14 ± 9 | 16 ± 10 | 37 ± 20 |
Range | 92–99 | 90–98 | 54–90 | 0.6–98 | 0–39 | 8–60 | 8–60 | 2–30 | 1–31 | 3.5–37 | 9–68 | |
Control | Mean ± SD | 96 ± 2 | 94 ± 2 | 86 ± 8 | 25 ± 36 | 4 ± 11 | 9 ± 7 | 9 ± 7 | 5 ± 3 | 5 ± 5 | 5 ± 4 | 11 ± 16 |
Range | 93–99 | 90–98 | 60–95 | 0–95 | 0–39 | 0.7–27 | 0.3–24 | 0.3–9 | 0–19 | 0.1–13 | 1.3–66 | |
p-Value | 0.26 | 0.77 | 0.003 | 0.04 | 0.003 | <0.001 | <0.001 | 0.006 | <0.001 | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo-Escario, Y.; Kumru, H.; Ferrer-Lluis, I.; Vidal, J.; Jané, R. Detection of Sleep-Disordered Breathing in Patients with Spinal Cord Injury Using a Smartphone. Sensors 2021, 21, 7182. https://doi.org/10.3390/s21217182
Castillo-Escario Y, Kumru H, Ferrer-Lluis I, Vidal J, Jané R. Detection of Sleep-Disordered Breathing in Patients with Spinal Cord Injury Using a Smartphone. Sensors. 2021; 21(21):7182. https://doi.org/10.3390/s21217182
Chicago/Turabian StyleCastillo-Escario, Yolanda, Hatice Kumru, Ignasi Ferrer-Lluis, Joan Vidal, and Raimon Jané. 2021. "Detection of Sleep-Disordered Breathing in Patients with Spinal Cord Injury Using a Smartphone" Sensors 21, no. 21: 7182. https://doi.org/10.3390/s21217182