Segmentation of Rat Brains and Cerebral Hemispheres in Triphenyltetrazolium Chloride-Stained Images after Stroke †
Abstract
:1. Introduction
- Challenges to brain extraction and hemisphere segmentation in TTC-stained rat images captured by a smartphone are discussed.
- An automatic rat brain extraction algorithm in light of saliency region detection and active contour rectification is investigated.
- An automatic rat hemisphere segmentation scheme based on initial midline estimation refined by the gradient vector flow is introduced.
- Influences of light reflection and brain distortion on the segmentation accuracy are reduced due to the proposed frameworks.
- Massive experiments in fair comparison with competitive methods are administered for segmentation performance evaluation.
- A computer-aided tool is provided for closer monitoring of the rat brain region.
- Overall rat brain processing time is reduced in contrast to manual delineation.
2. Brain Extraction
2.1. Challenges
- In addition to the stained rat brain slices, there are a scale and a label indicating the status of the subject being experimented, both of which need to be eliminated.
- The shape of the brains is irregular with broken and ambiguous boundaries.
- The colors of the brain slices range from white, pink, to cardinal with a nonuniform distribution.
- There are some bright stains on the brain regions due to the reflection of the moisture in the organ.
- The background is not clean and simple with a varying intensity distribution and a complicated pattern of light reflection.
2.2. Superpixel Oversegmentation
2.3. Salient Feature Computation
2.4. Saliency Trimap Construction
2.5. Salient Region Extraction
2.6. Final Brain Segmentation
3. Hemisphere Segmentation
3.1. Challenges
- Due to the manual placement of the rat brain slices, the midline is randomly oriented, not vertically.
- The rat brain can be seriously distorted due to the infarction of the induced stroke so that the midline is convoluted.
- The midline exhibits a similar color tone to its surrounding tissues and is visible in short segments to the naked eyes.
- There are merely few anatomically salient structures around the midline that can provide meaningful information for the identification.
3.2. Medial Subimage Extraction
3.3. Initial Midline Detection
3.4. Final Midline Estimation
4. Results and Discussion
4.1. Implementation and Image Acquisition
4.2. Evaluation Metrics
4.3. Evaluation of Rat Brain Extraction
4.4. Evaluation of Rat Hemisphere Segmentation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, L.-H.; Zhang, Z.-P.; Wang, F.-N.; Cheng, Q.-H.; Guo, G. Diffusion kurtosis imaging of microstructural changes in brain tissue affected by acute ischemic stroke in different locations. Neural Regen. Res. 2019, 14, 272–279. [Google Scholar]
- Tsai, Y.-H.; Yang, J.-L.; Lee, I.-N.; Yang, J.-T.; Lin, L.-C.; Huang, Y.-C.; Yeh, M.-Y.; Weng, H.-H.; Su, C.-H. Effects of Dehydration on Brain Perfusion and Infarct Core After Acute Middle Cerebral Artery Occlusion in Rats: Evidence From High-Field Magnetic Resonance Imaging. Front. Neurol. 2018, 9, 786. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, A.; Ward, R. Rank Awareness in Group-Sparse Recovery of Multi-Echo MR Images. Sensors 2013, 13, 3902–3921. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yu, Q.; Liang, W. Use of 2,3,5-triphenyltetrazolium chloride-stained brain tissues for immunofluorescence analyses after focal cerebral ischemia in rats. Pathol.–Res. Pract. 2018, 214, 174–179. [Google Scholar] [CrossRef]
- Benedek, A.; Móricz, K.; Jurányi, Z.; Gigler, G.; Lévay, G.; Hársing, L.G.; Mátyus, P.; Szénási, G.; Albert, M. Use of TTC staining for the evaluation of tissue injury in the early phases of reperfusion after focal cerebral ischemia in rats. Brain Res. 2006, 1116, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Shattuck, D.W.; Sandor-Leahy, S.R.; Schaper, K.A.; Rottenberg, D.A.; Leahy, R.M. Magnetic Resonance Image Tissue Classification Using a Partial Volume Model. NeuroImage 2001, 13, 856–876. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Xie, Z.; Huang, Y.; Gai, D. Intuitionistic Fuzzy C-Means Algorithm Based on Membership Information Transfer-Ring and Similarity Measurement. Sensors 2021, 21, 696. [Google Scholar] [CrossRef]
- Liu, H.-T.; Sheu, T.H.; Chang, H.-H. Automatic segmentation of brain MR images using an adaptive balloon snake model with fuzzy classification. Med. Biol. Eng. Comput. 2013, 51, 1091–1104. [Google Scholar] [CrossRef]
- Eskildsen, S.F.; Coupé, P.; Fonov, V.; Manjón, J.V.; Leung, K.K.; Guizard, N.; Wassef, S.N.; Østergaard, L.R.; Collins, D.L. BEaST: Brain extraction based on nonlocal segmentation technique. NeuroImage 2012, 59, 2362–2373. [Google Scholar] [CrossRef]
- Dayananda, C.; Choi, J.-Y.; Lee, B. Multi-Scale Squeeze U-SegNet with Multi Global Attention for Brain MRI Segmentation. Sensors 2021, 21, 3363. [Google Scholar] [CrossRef]
- Kalavathi, P.; Prasath, V.B.S. Methods on Skull Stripping of MRI Head Scan Images—A Review. J. Digit. Imaging 2016, 29, 365–379. [Google Scholar] [CrossRef] [Green Version]
- Murugavel, M.; Sullivan, J.M. Automatic cropping of MRI rat brain volumes using pulse coupled neural networks. NeuroImage 2009, 45, 845–854. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Unsal, H.S.; Tao, Y.; Zhang, N. Automatic Brain Extraction for Rodent MRI Images. Neuroinformatics 2020, 18, 395–406. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Li, S.; Li, L.; Hu, F.; Weng, N.; Fan, X.; Kuang, S. Total Flavonoids in Caragana (TFC) Promotes Angiogenesis and Enhances Cerebral Perfusion in a Rat Model of Ischemic Stroke. Front. Neurosci. 2018, 12, 635. [Google Scholar] [CrossRef]
- Wexler, E.J.; Peters, E.E.; Gonzales, A.; Gonzales, M.L.; Slee, A.M.; Kerr, J.S. An objective procedure for ischemic area evaluation of the stroke intraluminal thread model in the mouse and rat. J. Neurosci. Methods 2002, 113, 51–58. [Google Scholar] [CrossRef]
- Goldlust, E.J.; Paczynski, R.P.; He, Y.Y.; Hsu, C.Y.; Goldberg, M.P. Automated Measurement of Infarct Size With Scanned Images of Triphenyltetrazolium Chloride–Stained Rat Brains. Stroke 1996, 27, 1657–1662. [Google Scholar] [CrossRef]
- Fu, C.; Ma, K.; Li, Z.; Wang, H.; Chen, T.; Zhang, D.; Wang, S.; Mu, N.; Yang, C.; Zhao, L.; et al. Rapid, label-free detection of cerebral ischemia in rats using hyperspectral imaging. J. Neurosci. Methods 2020, 329, 108466. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.-F.; Ai, H.; Lu, W.; Cai, F. SAT: Free Software for the Semi-Automated Analysis of Rodent Brain Sections With 2,3,5-Triphenyltetrazolium Chloride Staining. Front. Neurosci. 2019, 13, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.H.; Yeh, S.J.; Chiang, M.C.; Hsieh, S.T. Automated Brain Extraction and Separation in Triphenyltetrazolium Chloride-Stained Rat Images. In Proceedings of the 2020 28th European Signal Processing Conference (EUSIPCO), Amsterdam, The Netherlands, 18–21 January 2021; pp. 1362–1366. [Google Scholar]
- Perazzi, F.; Krähenbühl, P.; Pritch, Y.; Hornung, A. Saliency filters: Contrast based filtering for salient region detection. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 733–740. [Google Scholar]
- Yang, C.; Zhang, L.; Lu, H.; Ruan, X.; Yang, M. Saliency Detection via Graph-Based Manifold Ranking. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 3166–3173. [Google Scholar]
- Liu, Z.; Shi, R.; Shen, L.; Xue, Y.; Ngan, K.N.; Zhang, Z. Unsupervised Salient Object Segmentation Based on Kernel Density Estimation and Two-Phase Graph Cut. IEEE Trans. Multimed. 2012, 14, 1275–1289. [Google Scholar] [CrossRef]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, M.; Zhang, G.; Mitra, N.J.; Huang, X.; Hu, S. Global contrast based salient region detection. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 409–416. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Becker, C.; Rigamonti, R.; Lepetit, V.; Fua, P. Supervised Feature Learning for Curvilinear Structure Segmentation; Springer: Berlin/Heidelberg, Germany, 2013; pp. 526–533. [Google Scholar]
- Liu, T.; Sun, J.; Zheng, N.; Tang, X.; Shum, H. Learning to Detect A Salient Object. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8. [Google Scholar]
- Wang, J.; Cohen, M.F. Optimized Color Sampling for Robust Matting. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8. [Google Scholar]
- Kim, J.; Han, D.; Tai, Y.; Kim, J. Salient Region Detection via High-Dimensional Color Transform and Local Spatial Support. IEEE Trans. Image Process. 2016, 25, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Mitra, N.J.; Huang, X.; Torr, P.H.S.; Hu, S. Global Contrast Based Salient Region Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 569–582. [Google Scholar] [CrossRef] [Green Version]
- Rother, C.; Kolmogorov, V.; Blake, A. “GrabCut”: Interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 2004, 23, 309–314. [Google Scholar] [CrossRef]
- Kass, M.; Witkin, A.; Terzopoulos, D. Snakes: Active contour models. Int. J. Comput. Vis. 1988, 1, 321–331. [Google Scholar] [CrossRef]
- Pizer, S.M.; Amburn, E.P.; Austin, J.D.; Cromartie, R.; Geselowitz, A.; Greer, T.; ter Haar Romeny, B.; Zimmerman, J.B.; Zuiderveld, K. Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 1987, 39, 355–368. [Google Scholar] [CrossRef]
- Xu, C.; Prince, J.L. Snakes, Shapes, and Gradient Vector Flow. IEEE Trans. Image Process. 1998, 7, 359–369. [Google Scholar]
- Chang, H.-H.; Zhuang, A.H.; Valentino, D.J.; Chu, W.-C. Performance measure characterization for evaluating neuroimage segmentation algorithms. Neuroimage 2009, 47, 122–135. [Google Scholar] [CrossRef]
- Jaccard, P. The distribution of flora in the alpine zone. New Phytol. 1912, 11, 37–50. [Google Scholar] [CrossRef]
- Dice, L.R. Measures of the amount of ecologic association between species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Kulkarni, N. Color Thresholding Method for Image Segmentation of Natural Images. Int. J. Image Graph. Signal Process. 2012, 4, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Chan, T.F.; Vese, L.A. Active contours without edges. IEEE Trans. Image Process. 2001, 10, 266–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Method | Subject 2 | Subject 20 | Subject 37 |
---|---|---|---|
CTM | 79.54% 80.47% | 76.86% 79.53% | 85.22% 77.58% |
TPS | 82.37% 82.15% | 83.22% 81.75% | 90.79% 80.02% |
Proposed | 84.21% 94.95% | 94.36% 94.34% | 95.24% 93.73% |
Method | |||||
---|---|---|---|---|---|
CTM | 78.76 ± 9.14 | 72.55 ± 8.34 | 45.12 ± 9.95 | 96.42 ± 2.96 | 71.32 ± 6.02 |
TPS | 80.87 ± 6.86 | 73.54 ± 7.02 | 52.50 ± 8.96 | 96.13 ± 1.94 | 73.49 ± 5.02 |
Proposed | 92.33 ± 2.18 | 85.78 ± 1.26 | 83.35 ± 2.97 | 97.73 ± 0.93 | 85.99 ± 3.12 |
Hemisphere | |||||
---|---|---|---|---|---|
Left | 96.94 ± 0.83 | 94.07 ± 1.56 | 93.66 ± 1.78 | 96.63 ± 1.44 | 97.26 ± 1.53 |
Right | 97.37 ± 0.76 | 94.88 ± 1.43 | 94.58 ± 1.61 | 96.39 ± 1.55 | 98.40 ± 1.32 |
Overall | 97.15 ± 0.82 | 94.47 ± 1.54 | 94.12 ± 1.75 | 96.51 ± 1.49 | 97.83 ± 1.53 |
Hemisphere | |||||
---|---|---|---|---|---|
Left | 172,566 ± 138,157 | 173,566 ± 138,805 | 3574 ± 3567 | 9781 ± 6949 | 6.11 ± 1.66 |
Right | 172,570 ± 136,660 | 175,326 ± 137,243 | 3853 ± 4136 | 8668 ± 6508 | 5.21 ± 1.48 |
Overall | 3714 ± 3831 | 9224 ± 6698 | 5.66 ± 1.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, H.-H.; Yeh, S.-J.; Chiang, M.-C.; Hsieh, S.-T. Segmentation of Rat Brains and Cerebral Hemispheres in Triphenyltetrazolium Chloride-Stained Images after Stroke. Sensors 2021, 21, 7171. https://doi.org/10.3390/s21217171
Chang H-H, Yeh S-J, Chiang M-C, Hsieh S-T. Segmentation of Rat Brains and Cerebral Hemispheres in Triphenyltetrazolium Chloride-Stained Images after Stroke. Sensors. 2021; 21(21):7171. https://doi.org/10.3390/s21217171
Chicago/Turabian StyleChang, Herng-Hua, Shin-Joe Yeh, Ming-Chang Chiang, and Sung-Tsang Hsieh. 2021. "Segmentation of Rat Brains and Cerebral Hemispheres in Triphenyltetrazolium Chloride-Stained Images after Stroke" Sensors 21, no. 21: 7171. https://doi.org/10.3390/s21217171
APA StyleChang, H.-H., Yeh, S.-J., Chiang, M.-C., & Hsieh, S.-T. (2021). Segmentation of Rat Brains and Cerebral Hemispheres in Triphenyltetrazolium Chloride-Stained Images after Stroke. Sensors, 21(21), 7171. https://doi.org/10.3390/s21217171