The Effect of Physiological Incubation on the Properties of Elastic Magnetic Composites for Soft Biomedical Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. PDMS-MPs Preparation
2.2. Thermal Properties
2.3. Physicochemical Properties
2.4. Rheological Properties
3. Results and Discussion
3.1. Thermal Analysis
3.2. Physicochemical Properties
3.3. Rheological Properties
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Sitti, M.; Ceylan, H.; Hu, W.; Giltinan, J.; Turan, M.; Yim, S.; Diller, E. Biomedical Applications of Untethered Mobile Milli/Microrobots. Proc. IEEE 2015, 103, 205–224. [Google Scholar] [CrossRef] [PubMed]
- Mack, J.J.; Cox, B.N.; Lee, M.; Dunn, J.C.Y.; Wu, B.W. Magnetically Actuable Polymer Nanocomposites for Bioengineering Applications. J. Mater. Sci. 2007, 42, 6139–6147. [Google Scholar] [CrossRef]
- Peyer, K.E.; Zhang, L.; Nelson, B.J. Bio-Inspired Magnetic Swimming Microrobots for Biomedical Applications. Nanoscale 2013, 5, 1259–1272. [Google Scholar] [CrossRef]
- Li, W.H.; Nakano, M. Fabrication and Characterization of PDMS Based Magnetorheological Elastomers. Smart Mater. Struct. 2013, 22, 055035. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Zhang, J.; Salehizadeh, M.; Onaizah, O.; Diller, E. Millimeter-Scale Flexible Robots with Programmable Three-Dimensional Magnetization and Motions. Sci. Robot. 2019, 4, eaav4494. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, Z.; Hu, W.; Soon, R.H.; Yasa, I.C.; Liu, Z.; Sitti, M. Voxelated Three-Dimensional Miniature Magnetic Soft Machines via Multimaterial Heterogeneous Assembly. Sci. Robot. 2021, 6, eabf0112. [Google Scholar] [CrossRef] [PubMed]
- Bira, N.; Dhagat, P.; Davidson, J.R. A Review of Magnetic Elastomers and Their Role in Soft Robotics. Front. Robot. AI 2020, 7, 146. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Mao, G.; Ge, J.; Drack, M.; Cañón Bermúdez, G.S.; Wirthl, D.; Illing, R.; Kosub, T.; Bischoff, L.; Wang, C.; et al. Untethered and Ultrafast Soft-Bodied Robots. Commun. Mater. 2020, 1, 67. [Google Scholar] [CrossRef]
- Cianchetti, M.; Laschi, C.; Menciassi, A.; Dario, P. Biomedical Applications of Soft Robotics. Nat. Rev. Mater. 2018, 3, 143–153. [Google Scholar] [CrossRef]
- Wallin, T.J.; Pikul, J.; Shepherd, R.F. 3D Printing of Soft Robotic Systems. Nat. Rev. Mater. 2018, 3, 84–100. [Google Scholar] [CrossRef]
- Zhou, R.; Surendran, A.N.; Mejulu, M.; Lin, Y. Rapid Microfluidic Mixer Based on Ferrofluid and Integrated Microscale NdFeB-PDMS Magnet. Micromachines 2019, 11, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Ding, J. Material Extrusion 3D Printing of Carbon Material Reinforced PDMS Matrix Composites and Their Mechanical Properties. Procedia Manuf. 2021, 53, 450–455. [Google Scholar] [CrossRef]
- Qi, D.; Zhang, K.; Tian, G.; Jiang, B.; Huang, Y. Stretchable Electronics Based on PDMS Substrates. Adv. Mater. 2021, 33, 2003155. [Google Scholar] [CrossRef]
- Lou, Y.; Schapman, D.; Mercier, D.; Alexandre, S.; Burel, F.; Thebault, P.; Kébir, N. Self-Disinfecting PDMS Surfaces with High Quaternary Ammonium Functionality by Direct Surface Photoinitiated Polymerization of Vinylbenzyl Dimethylbutylammonium Chloride. Eur. Polym. J. 2021, 152, 110473. [Google Scholar] [CrossRef]
- Chen, L.; Chen, X.; Zhang, Z.; Li, T.; Zhao, T.; Li, X.; Zhang, J. PDMS-Based Capacitive Pressure Sensor for Flexible Transparent Electronics. J. Sens. 2019, 2019, 1–6. [Google Scholar] [CrossRef]
- Ozbolat, V.; Dey, M.; Ayan, B.; Povilianskas, A.; Demirel, M.C.; Ozbolat, I.T. 3D Printing of PDMS Improves Its Mechanical and Cell Adhesion Properties. ACS Biomater. Sci. Eng. 2018, 4, 682–693. [Google Scholar] [CrossRef]
- Rajamanickam, R.; Kwon, K.; Tae, G. Soft and Elastic Hollow Microcapsules Embedded Silicone Elastomer Films with Enhanced Water Uptake and Permeability for Mechanical Stimuli Responsive Drug Delivery Applications. Mater. Sci. Eng. C 2020, 111, 110789. [Google Scholar] [CrossRef]
- Sabo, S.; Waters, L.J. Poly(Dimethylsiloxane): A Sustainable Human Skin Alternative for Transdermal Drug Delivery Prediction. J. Pharm. Sci. 2021, 110, 1018–1024. [Google Scholar] [CrossRef]
- Wang, J.; Kaplan, J.A.; Colson, Y.L.; Grinstaff, M.W. Mechanoresponsive Materials for Drug Delivery: Harnessing Forces for Controlled Release. In Advanced Drug Delivery Reviews; Elsevier B.V.: Amsterdam, The Netherlands, 2017; pp. 68–82. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Lee, H.; Kwon, S.; Park, S. Active Delivery of Multi-Layer Drug-Loaded Microneedle Patches Using Magnetically Driven Capsule. Med. Eng. Phys. 2020, 85, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Nelson, B.J.; Kaliakatsos, I.K.; Abbott, J.J. Microrobots for Minimally Invasive Medicine. Annu. Rev. Biomed. Eng. 2010, 12, 55–85. [Google Scholar] [CrossRef] [Green Version]
- Saadat, M.; Manshadi, M.K.D.; Mohammadi, M.; Zare, M.J.; Zarei, M.; Kamali, R.; Sanati-Nezhad, A. Magnetic Particle Targeting for Diagnosis and Therapy of Lung Cancers. J. Control. Release 2020, 328, 776–791. [Google Scholar] [CrossRef]
- Farzaneh, S.; Hosseinzadeh, S.; Samanipour, R.; Hatamie, S.; Ranjbari, J.; Khojasteh, A. Fabrication and Characterization of Cobalt Ferrite Magnetic Hydrogel Combined with Static Magnetic Field as a Potential Bio-Composite for Bone Tissue Engineering. J. Drug Deliv. Sci. Technol. 2021, 64, 102525. [Google Scholar] [CrossRef]
- Chen, C.; Wu, J.; Wang, S.; Shao, H. Effect of Fe3O4 Concentration on 3D Gel-Printed Fe3O4/CaSiO3 Composite Scaffolds for Bone Engineering. Ceram. Int. 2021, 47, 21038–21044. [Google Scholar] [CrossRef]
- Liu, J.A.-C.; Gillen, J.H.; Mishra, S.R.; Evans, B.A.; Tracy, J.B. Photothermally and Magnetically Controlled Reconfiguration of Polymer Composites for Soft Robotics. Sci. Adv. 2019, 5, eaaw2897. [Google Scholar] [CrossRef] [Green Version]
- Leich, L.; Röttger, A.; Krengel, M.; Theisen, W. Recycling of NdFeB Magnets by Electrodischarge Sintering—Microstructure, Magnetic, and Mechanical Properties. J. Sustain. Metall. 2019, 5, 107–117. [Google Scholar] [CrossRef]
- Iacovacci, V.; Lucarini, G.; Innocenti, C.; Comisso, N.; Dario, P.; Ricotti, L.; Menciassi, A. Polydimethylsiloxane Films Doped with NdFeB Powder: Magnetic Characterization and Potential Applications in Biomedical Engineering and Microrobotics. Biomed. Microdevices 2015, 17, 112. [Google Scholar] [CrossRef]
- Seyfoori, A.; Ebrahimi, S.A.S.; Omidian, S.; Naghib, S.M. Multifunctional Magnetic ZnFe2O4-Hydroxyapatite Nanocomposite Particles for Local Anti-Cancer Drug Delivery and Bacterial Infection Inhibition: An in Vitro Study. J. Taiwan Inst. Chem. Eng. 2019, 96, 503–508. [Google Scholar] [CrossRef]
- Aribal, E.; Çelik, L.; Yilmaz, C.; Demirkiran, C.; Guner, D.C. Effects of Iron Oxide Particles on MRI and Mammography in Breast Cancer Patients after a Sentinel Lymph Node Biopsy with Paramagnetic Tracers. Clin. Imaging 2021, 75, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Kaul, M.G.; Mummert, T.; Graeser, M.; Salamon, J.; Jung, C.; Tahir, E.; Ittrich, H.; Adam, G.; Peldschus, K. Pulmonary Blood Volume Estimation in Mice by Magnetic Particle Imaging and Magnetic Resonance Imaging. Sci. Rep. 2021, 11, 4848. [Google Scholar] [CrossRef]
- Gleich, B.; Weizenecker, J. Tomographic Imaging Using the Nonlinear Response of Magnetic Particles. Nature 2005, 435, 1214–1217. [Google Scholar] [CrossRef]
- Gil, S.; Mano, J.F. Magnetic Composite Biomaterials for Tissue Engineering. Biomater. Sci. 2014, 2, 812–818. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Lu, Z.; Wang, X.; Zhang, Z.; Zhang, Q.; Yan, B.; Wang, Y. A Compound of ZnO/PDMS with Photocatalytic, Self-Cleaning and Antibacterial Properties Prepared via Two-Step Method. Appl. Surf. Sci. 2021, 550, 149286. [Google Scholar] [CrossRef]
- Lee, S.S.; Huber, S.; Ferguson, S.J. Comprehensive in Vitro Comparison of Cellular and Osteogenic Response to Alternative Biomaterials for Spinal Implants. Mater. Sci. Eng. C 2021, 127, 112251. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Jiang, L. Contact Angle Measurement of Natural Materials. Colloids Surf. B Biointerfaces 2018, 161, 324–330. [Google Scholar] [CrossRef]
- Chen, L.; Cheng, L.; Wang, Z.; Zhang, J.; Mao, X.; Liu, Z.; Zhang, Y.; Cui, W.; Sun, X. Conditioned Medium-Electrospun Fiber Biomaterials for Skin Regeneration. Bioact. Mater. 2021, 6, 361–374. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Li, H. Biomaterials Affect Cell-Cell Interactions in Vitro in Tissue Engineering. J. Mater. Sci. Technol. 2021, 63, 62–72. [Google Scholar] [CrossRef]
- Mishra, R.; Tripathy, S.P.; Fink, D.; Dwivedi, K.K. A Study of the Activation Energy of Thermal Decomposition of Irradiated Polymers. Radiat. Eff. Defects Solids 2004, 159, 569–573. [Google Scholar] [CrossRef]
- Vyazovkin, S. Kissinger Method in Kinetics of Materials: Things to Beware and Be Aware Of. Molecules 2020, 25, 2813. [Google Scholar] [CrossRef] [PubMed]
- Machado Rodrigues, M.; Kerstner Baldin, E.K.; Fontoura, C.P.; Leidens, L.M.; Barbieri, R.A.; Frassini, R.; de Fraga Malfatti, C.; Roesch-Ely, M.; Figueroa, C.A.; Aguzzoli, C. Overview of Sterilization Methods for UHMWPE through Surface Analysis. Mater. Adv. 2020, 1, 3243–3255. [Google Scholar] [CrossRef]
- Nazhat, S.N. Thermal Analysis of Biomaterials. In Principles and Applications of Thermal Analysis; Blackwell Publishing Ltd.: Oxford, UK, 2008; pp. 256–285. [Google Scholar] [CrossRef]
- Morbioli, G.G.; Speller, N.C.; Stockton, A.M. A Practical Guide to Rapid-Prototyping of PDMS-Based Microfluidic Devices: A Tutorial. Anal. Chim. Acta 2020, 1135, 150–174. [Google Scholar] [CrossRef]
- Tran, K.A.; Kraus, E.; Clark, A.T.; Bennett, A.; Pogoda, K.; Cheng, X.; Cē Bers, A.; Janmey, P.A.; Galie, P.A. Dynamic Tuning of Viscoelastic Hydrogels with Carbonyl Iron Microparticles Reveals the Rapid Response of Cells to Three-Dimensional Substrate Mechanics. ACS Appl. Mater. Interfaces 2021, 13, 20947–20959. [Google Scholar] [CrossRef]
- Ijaz, S.; Li, H.; Hoang, M.C.; Kim, C.S.; Bang, D.; Choi, E.; Park, J.O. Magnetically Actuated Miniature Walking Soft Robot Based on Chained Magnetic Microparticles-Embedded Elastomer. Sens. Actuators A Phys. 2020, 301, 111707. [Google Scholar] [CrossRef]
- Lin, I.K.; Ou, K.S.; Liao, Y.M.; Liu, Y.; Chen, K.S.; Zhang, X. Viscoelastic Characterization and Modeling of Polymer Transducers for Biological Applications. J. Microelectromech. Syst. 2009, 18, 1087–1099. [Google Scholar] [CrossRef]
- ISO. ISO 11357-1:2016 Plastics—Differential Scanning Calorimetry—General Principles; International Organization for Standardization: Geneva, Switzerland, 2016. [Google Scholar]
- ISO. ISO 11358-1:2014 Plastics—Thermogravimetry (TG) of Polymers; International Organization for Standardization: Geneva, Switzerland, 2014. [Google Scholar]
- Łysik, D.; Mystkowska, J.; Markiewicz, G.; Deptuła, P.; Bucki, R. The Influence of Mucin-Based Artificial Saliva on Properties of Polycaprolactone and Polylactide. Polymers 2019, 11, 1880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, R.; Yao, J.; Mu, Q.; Peng, D.; Zhao, H.; Yang, Z. Study on the Synthesis and Thermal Stability of Silicone Resin Containing Trifluorovinyl Ether Groups. Polymers 2020, 12, 2284. [Google Scholar] [CrossRef]
- Toto, E.; Laurenzi, S.; Santonicola, M.G. Flexible Nanocomposites Based on Polydimethylsiloxane Matrices with DNA-Modified Graphene Filler: Curing Behavior by Differential Scanning Calorimetry. Polymers 2020, 12, 2301. [Google Scholar] [CrossRef] [PubMed]
- Bosq, N.; Guigo, N.; Persello, J.; Sbirrazzuoli, N. Melt and Glass Crystallization of PDMS and PDMS Silica Nanocomposites. Phys. Chem. Chem. Phys. 2014, 16, 7830–7840. [Google Scholar] [CrossRef]
- Bykov, M.; Bykova, E.; Aprilis, G.; Glazyrin, K.; Koemets, E.; Chuvashova, I.; Kupenko, I.; McCammon, C.; Mezouar, M.; Prakapenka, V.; et al. Fe-N System at High Pressure Reveals a Compound Featuring Polymeric Nitrogen Chains. Nat. Commun. 2018, 9, 2756. [Google Scholar] [CrossRef] [Green Version]
- Nair, S.; Aswathy, U.; Mathew, A.; Raghavan, R. Studies on the Thermal Properties of Silicone Polymer Based Thermal Protection Systems for Space Applications. J. Therm. Anal. Calorim. 2017, 128, 1731–1741. [Google Scholar] [CrossRef]
- Camino, G.; Lomakin, S.; Lazzari, M. Polydimethylsiloxane Thermal Degradation Part 1. Kinetic Aspects. Polymer 2001, 42, 2395–2402. [Google Scholar] [CrossRef]
- Sethy, N.K.; Arif, Z.; Mishra, P.K.; Kumar, P. Synthesis of SiO 2 Nanoparticle from Bamboo Leaf and Its Incorporation in PDMS Membrane to Enhance Its Separation Properties. J. Polym. Eng. 2019, 39, 679–687. [Google Scholar] [CrossRef]
- Al-Harbi, L.; Darwish, M.; Khowdiary, M.; Stibor, I. Controlled Preparation of Thermally Stable Fe-Poly(Dimethylsiloxane) Composite by Magnetic Induction Heating. Polymers 2018, 10, 507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Xie, C.; Zeng, L.; Xu, H. Thermal Decomposition Behavior and Kinetics of Nanocomposites at Low-Modified ZnO Content. RSC Adv. 2019, 9, 790–800. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Mu, X.; Wen, Q.; Wen, Z.; Yang, J.; Hu, C.; Shi, H. Flexible and Transparent Triboelectric Nanogenerator Based on High Performance Well-Ordered Porous PDMS Dielectric Film. Nano Res. 2016, 9, 3714–3724. [Google Scholar] [CrossRef]
- Chuah, Y.J.; Koh, Y.T.; Lim, K.; Menon, N.V.; Wu, Y.; Kang, Y. Simple Surface Engineering of Polydimethylsiloxane with Polydopamine for Stabilized Mesenchymal Stem Cell Adhesion and Multipotency. Sci. Rep. 2016, 5, 18162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruben, B.; Elisa, M.; Leandro, L.; Victor, M.; Gloria, G.; Marina, S.; Mian, K.S.; Pandiyan, R.; Nadhira, L. Oxygen Plasma Treatments of Polydimethylsiloxane Surfaces: Effect of the Atomic Oxygen on Capillary Flow in the Microchannels. Micro Nano Lett. 2017, 12, 754–757. [Google Scholar] [CrossRef]
- Han, B.; Wang, P.; Jin, H.; Hou, Z.; Bai, X. Wettability and Surface Energy of Parylene F Deposited on PDMS. Phys. Lett. A 2020, 384, 126628. [Google Scholar] [CrossRef]
- Nakano, A.; Miki, N.; Hishida, K.; Hotta, A. Gas Permeability and Mechanical Properties of PDMS Mixed with PMPS Nanofibers Produced by Electrospinning. MRS Proc. 2012, 1410, 7–12. [Google Scholar] [CrossRef]
- Maxwell, R.S.; Balazs, B. Residual Dipolar Coupling for the Assessment of Cross-Link Density Changes in γ-Irradiated Silica-PDMS Composite Materials. J. Chem. Phys. 2002, 116, 10492–10502. [Google Scholar] [CrossRef]
- Kaidarova, A.; Khan, M.A.; Amara, S.; Geraldi, N.R.; Karimi, M.A.; Shamim, A.; Wilson, R.P.; Duarte, C.M.; Kosel, J. Tunable, Flexible Composite Magnets for Marine Monitoring Applications. Adv. Eng. Mater. 2018, 20, 1800229. [Google Scholar] [CrossRef]
- Chen, D.; Chen, F.; Hu, X.; Zhang, H.; Yin, X.; Zhou, Y. Thermal Stability, Mechanical and Optical Properties of Novel Addition Cured PDMS Composites with Nano-Silica Sol and MQ Silicone Resin. Compos. Sci. Technol. 2015, 117, 307–314. [Google Scholar] [CrossRef]
- Raveendran, R.; Namboothiry, M.A.G. Surface-Treated Poly(Dimethylsiloxane) as a Gate Dielectric in Solution-Processed Organic Field-Effect Transistors. ACS Omega 2018, 3, 11278–11285. [Google Scholar] [CrossRef] [PubMed]
- Provin, C.; Fujii, T. Reaction–Diffusion Phenomena in a PDMS Matrix Can Modify Its Topography. Lab Chip 2011, 11, 2948. [Google Scholar] [CrossRef]
- Fan, X.; Jia, C.; Yang, J.; Li, G.; Mao, H.; Jin, Q.; Zhao, J. A Microfluidic Chip Integrated with a High-Density PDMS-Based Microfiltration Membrane for Rapid Isolation and Detection of Circulating Tumor Cells. Biosens. Bioelectron. 2015, 71, 380–386. [Google Scholar] [CrossRef]
- Heyries, K.A.; Mandon, C.A.; Ceriotti, L.; Ponti, J.; Colpo, P.; Blum, L.J.; Marquette, C.A. “Macromolecules to PDMS Transfer” as a General Route for PDMS Biochips. Biosens. Bioelectron. 2009, 24, 1146–1152. [Google Scholar] [CrossRef]
- Sato, R.H.; Kosaka, P.M.; Omori, Á.T.; Ferreira, E.A.; Petri, D.F.S.; Malvar, Ó.; Domínguez, C.M.; Pini, V.; Ahumada, Ó.; Tamayo, J.; et al. Development of a Methodology for Reversible Chemical Modification of Silicon Surfaces with Application in Nanomechanical Biosensors. Biosens. Bioelectron. 2019, 137, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Juárez-Moreno, J.A.; Ávila-Ortega, A.; Oliva, A.I.; Avilés, F.; Cauich-Rodríguez, J.V. Effect of Wettability and Surface Roughness on the Adhesion Properties of Collagen on PDMS Films Treated by Capacitively Coupled Oxygen Plasma. Appl. Surf. Sci. 2015, 349, 763–773. [Google Scholar] [CrossRef]
- Perales-Martínez, I.A.; Palacios-Pineda, L.M.; Lozano-Sánchez, L.M.; Martínez-Romero, O.; Puente-Cordova, J.G.; Elías-Zúñiga, A. Enhancement of a Magnetorheological PDMS Elastomer with Carbonyl Iron Particles. Polym. Test. 2017, 57, 78–86. [Google Scholar] [CrossRef]
- Cevik, P.; Yildirim-Bicer, A.Z. Effect of Different Types of Disinfection Solution and Aging on the Hardness and Colour Stability of Maxillofacial Silicone Elastomers. Int. J. Artif. Organs 2018, 41, 108–114. [Google Scholar] [CrossRef]
- Klimecka-Tatar, D.; Pawłowska, G.; Sozańska, M. The Effect of Powder Particle Biencapsulation with Ni-P Layer on Local Corrosion of Bonded Nd-(Fe,Co)-B Magnetic Material. Arch. Metall. Mater. 2015, 60, 153–157. [Google Scholar] [CrossRef]
Element | Concentration Weight (%) | CAS Number |
---|---|---|
Iron | 71.1 | 7439-89-6 |
Neodymium | 26.0 | 7440-00-8 |
Niobium | 1.9 | 7440-03-1 |
Boron | 1.0 | 7439-89-6 |
Designation | Percentage of MPs (%) | t (weeks) |
---|---|---|
0-0 | 0 | 0 |
30-0 | 30 | 0 |
50-0 | 50 | 0 |
70-0 | 70 | 0 |
0-1 | 0 | 1 |
30-1 | 30 | 1 |
50-1 | 50 | 1 |
70-1 | 70 | 1 |
0-2 | 0 | 2 |
30-2 | 30 | 2 |
50-2 | 50 | 2 |
70-2 | 70 | 2 |
0-4 | 0 | 4 |
30-4 | 30 | 4 |
50-4 | 50 | 4 |
70-4 | 70 | 4 |
0-8 | 0 | 8 |
30-8 | 30 | 8 |
50-8 | 50 | 8 |
70-8 | 70 | 8 |
0-12 | 0 | 12 |
30-12 | 30 | 12 |
50-12 | 50 | 12 |
70-12 | 70 | 12 |
Sample | T1 wt.% (°C) | T5 wt.% (°C) | Tpeak (°C) | Deriv. m (%/°C) | Residue at 950 °C (wt.%) |
---|---|---|---|---|---|
0-0 | 252.71 | 360.69 | 534.72 | 0.6643 | 40.57 |
0-1 | 261.69 | 377.69 | 528.16 | 1.0600 | 30.83 |
0-2 | 263.37 | 380.21 | 517.23 | 0.6242 | 32.21 |
0-4 | 266.73 | 373.49 | 700.48 | 2.7580 | 25.43 |
0-8 | 257.60 | 373.93 | 535.97 | 0.6513 | 35.2 |
0-12 | 258.27 | 374.60 | 501.76 | 1.0943 | 18.85 |
30-0 | 265.89 | 397.03 | 468.48 | 0.2105 | 60.5 |
30-1 | 268.41 | 404.59 | 490.33 | 0.2624 | 55.86 |
30-2 | 275.98 | 413.84 | 505.46 | 0.1956 | 60.58 |
30-4 | 249.92 | 401.23 | 479.41 | 0.2592 | 54.57 |
30-8 | 269.36 | 404.86 | 494.95 | 0.2323 | 53.15 |
30-12 | 184.05 | 396.79 | 497.65 | 0.2477 | 57.23 |
50-0 | 293.00 | 440.21 | 476.04 | 0.1333 | 74.57 |
50-1 | 288.59 | 437.38 | 477.72 | 0.1488 | 72.02 |
50-2 | 277.66 | 434.15 | 480.25 | 0.1454 | 71.59 |
50-4 | 281.02 | 431.49 | 483.61 | 0.1487 | 66.43 |
50-8 | 281.14 | 429.06 | 480.84 | 0.2217 | 65.82 |
50-12 | 224.65 | 418.30 | 477.47 | 0.1777 | 64.76 |
70-0 | 326.42 | 472.68 | 485.35 | 0.1178 | 85.09 |
70-1 | 313.81 | 461.75 | 466.80 | 0.0681 | 82.82 |
70-2 | 298.88 | 438.48 | 616.42 | 0.0991 | 82.89 |
70-4 | 310.44 | 457.55 | 465.96 | 0.0887 | 82.69 |
70-8 | 305.84 | 479.49 | 590.44 | 0.1450 | 82 |
70-12 | 299.96 | 459.99 | 469.03 | 0.0845 | 82.29 |
Sample | k (°C/min) | Tmax (°C) | Tmax (K) | Ea (kJ/mol) |
---|---|---|---|---|
70-0 | 5 | 460.86 | 734.01 | 559.23 |
10 | 466.17 | 739.32 | ||
20 | 471.88 | 745.03 | ||
70-12 | 5 | 440.09 | 713.24 | 136.53 |
10 | 464.54 | 737.69 | ||
20 | 481.11 | 754.26 |
Sample | Sa (µm) | σSa (µm) |
---|---|---|
0-0 | 0.103 | 0.0087 |
0-12 | 0.753 | 0.0237 |
30-0 | 0.095 | 0.0138 |
30-12 | 0.099 | 0.0046 |
50-0 | 0.091 | 0.0016 |
50-12 | 0.228 | 0.0076 |
70-0 | 0.128 | 0.0754 |
70-12 | 0.958 | 0.0271 |
MPs Content in PDMS (%) | G0 (Pa) | G1 (Pa) | λ (s) = v1/G1 | |||
---|---|---|---|---|---|---|
Non-Incubated | Incubated | Non-Incubated | Incubated | Non-Incubated | Incubated | |
0 | 57,000 | 175,000 | 10,000 | 52,900 | 21.60 | 31.60 |
30 | 66,360 | 97,000 | 11,500 | 25,560 | 70.00 | 80.00 |
50 | 78,000 | 60,000 | 13,000 | 20,600 | 78.00 | 91.00 |
70 | 80,000 | 55,000 | 15,700 | 10,115 | 104.00 | 138.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mystkowska, J.; Powojska, A.; Łysik, D.; Niewęgłowska, J.; Bermúdez, G.S.C.; Mystkowski, A.; Makarov, D. The Effect of Physiological Incubation on the Properties of Elastic Magnetic Composites for Soft Biomedical Sensors. Sensors 2021, 21, 7122. https://doi.org/10.3390/s21217122
Mystkowska J, Powojska A, Łysik D, Niewęgłowska J, Bermúdez GSC, Mystkowski A, Makarov D. The Effect of Physiological Incubation on the Properties of Elastic Magnetic Composites for Soft Biomedical Sensors. Sensors. 2021; 21(21):7122. https://doi.org/10.3390/s21217122
Chicago/Turabian StyleMystkowska, Joanna, Anna Powojska, Dawid Łysik, Joanna Niewęgłowska, Gilbert Santiago Cañón Bermúdez, Arkadiusz Mystkowski, and Denys Makarov. 2021. "The Effect of Physiological Incubation on the Properties of Elastic Magnetic Composites for Soft Biomedical Sensors" Sensors 21, no. 21: 7122. https://doi.org/10.3390/s21217122
APA StyleMystkowska, J., Powojska, A., Łysik, D., Niewęgłowska, J., Bermúdez, G. S. C., Mystkowski, A., & Makarov, D. (2021). The Effect of Physiological Incubation on the Properties of Elastic Magnetic Composites for Soft Biomedical Sensors. Sensors, 21(21), 7122. https://doi.org/10.3390/s21217122