AdjustSense: Adaptive 3D Sensing System with Adjustable Spatio-Temporal Resolution and Measurement Range Using High-Speed Omnidirectional Camera and Direct Drive Motor
Abstract
:1. Introduction
2. Related Work
2.1. High-Speed 3D Sensing
2.2. Adaptive 3D Sensing
3. Method of AdjustSense
3.1. Concept and Configuration
3.2. Adaptive 3D Sensing Based on Light-Section Method
3.3. Control Algorithm for Adjustable Spatio-Temporal Resolution and Measurement Range
4. Experiments
4.1. Experimental Configuration
4.2. Experimental Details
5. Results
5.1. Evaluation of Spatio-Temporal Resolution, Measurement Range and Measurement Accuracy
5.2. Demonstration of 360 and Local 3D Sensing in AdjustSense
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mancini, F.; Dubbini, M.; Gattelli, M.; Stecchi, F.; Fabbri, S.; Gabbianelli, G. Using Unmanned Aerial Vehicles (UAV) for High-Resolution Reconstruction of Topography: The Structure from Motion Approach on Coastal Environments. Remote Sens. 2013, 5, 6880–6898. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, R.; Roxas, M.; Sato, Y.; Oishi, T.; Masuda, T.; Ikeuchi, K. A 3D Reconstruction with High Density and Accuracy Using Laser Profiler and Camera Fusion System on a Rover. Proceedings of 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 620–628. [Google Scholar]
- Aoyama, T.; Li, L.; Jiang, M.; Inoue, K.; Takaki, T.; Ishii, I.; Yang, H.; Umemoto, C.; Matsuda, H.; Chikaraishi, M.; et al. Vibration Sensing of a Bridge Model Using a Multithread Active Vision System. IEEE/ASME Trans. Mechatron. 2018, 23, 179–189. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, J.; Xi, N.; Jia, Y.; Li, W. Development of an Omni-directional 3D Camera for Robot Navigation. Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Hokkaido, Japan, 11–15 July 2022; pp. 262–267. [Google Scholar]
- Higuchi, H.; Fujii, H.; Taniguchi, A.; Watanabe, M.; Yamashita, A.; Asama, H. 3D Measurement of Large Structure by Multiple Cameras and a Ring Laser. J. Robot. Mechatron. 2019, 31, 251–262. [Google Scholar] [CrossRef]
- Barnard, S.T.; Fischler, M.A. Computational Stereo. ACM Comput. Surv. 1982, 14, 553–572. [Google Scholar] [CrossRef]
- Massa, J.S.; Buller, G.S.; Walker, A.C.; Cova, S.; Umasuthan, M.; Wallace, A.M. Time-of-flight optical ranging system based on time-correlated single-photon counting. Appl. Opt. 1998, 37, 7298–7304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Payeur, P.; Desjardins, D. Structured Light Stereoscopic Imaging with Dynamic Pseudo-random Patterns. In Image Analysis and Recognition; Kamel, M., Campilho, A., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2009; pp. 687–696. [Google Scholar]
- Keselman, L.; Woodfill, J.; Grunnet-Jepsen, A.; Bhowmik, A. Intel RealSense Stereoscopic Depth Cameras. Proceedings of Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1–10. [Google Scholar]
- Zhang, Z. Microsoft Kinect Sensor and Its Effect. IEEE Multimed. 2012, 19, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, Y.; Komuro, T.; Ishikawa, M. 955-fps Real-time Shape Measurement of a Moving/deforming Object Using High-speed Vision for Numerous-point Analysis. Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Roma, Italy, 10–14 April 2007; pp. 3192–3197. [Google Scholar]
- Namiki, A.; Shimada, K.; Ishii, Y.K. Development of an Active High-speed 3-D Vision System. Sensors 2019, 19, 1572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyashita, L.; Kimura, Y.; Tabata, S.; Ishikawa, M. High-speed simultaneous measurement of depth and normal for real-time 3D reconstruction. In Applications of Digital Image Processing XLIV; SPIE: Bellingham, WA, USA, 2021; Volume 11842, pp. 442–448. [Google Scholar]
- Tabata, S.; Noguchi, S.; Watanabe, Y.; Ishikawa, M. High-speed 3D Sensing with Three-view Geometry Using a Segmented Pattern. In Proceedings of the IEEE/RSJ International Conference Intelligent Robots Systems (IROS), Tokyo, Japan, 3–7 November 2013; pp. 3900–3917. [Google Scholar]
- Chen, J.; Gu, Q.; Gao, H.; Aoyama, T.; Takaki, T.; Ishii, I. Fast 3-D shape measurement using blink-dot projection. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems. IEEE, Tokyo, Japan, 3–7 November 2013; pp. 2683–2688. [Google Scholar]
- Nagai, Y.; Kuroda, Y. Control of Spatial Points Density According to Object Shape with 3D LiDAR. In Proceedings of the SICE 20th System Integration Division (SI2019), Kagawa, Japan, 12–14 December 2019; pp. 2093–2097. [Google Scholar]
- Sonoda, T.; Sweetser, J.N.; Khuong, T.; Brook, S.; Grunnet-Jepsen, A. High-Speed Capture Mode of Intel RealSense Depth Camera D435. Available online: https://dev.intelrealsense.com/docs/high-speed-capture-mode-of-intel-realsense-depth-camera-d435 (accessed on 19 August 2021).
- Curless, B.; Levoy, M. Better Optical Triangulation through Spacetime Analysis. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Cambridge, MA, USA, 20–23 June 1995; pp. 987–994. [Google Scholar]
- Scaramuzza, D.; Martinelli, A.; Siegwart, R. A Toolbox for Easily Calibrating Omnidirectional Cameras. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 5695–5701. [Google Scholar]
- Ikura, M.; Pathak, S.; Yamashita, A.; Asama, H. Polynomial-fitting based calibration for an active 3D sensing system using dynamic light section method. In Proceedings of the SPIE; SPIE: Bellingham, WA, USA, 2021; Volume 11794, pp. 131–137. [Google Scholar]
- Zhang, Z. A Flexible New Technique for Camera Calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef] [Green Version]
- Ikura, M.; Miyashita, L.; Ishikawa, M. Stabilization System for UAV Landing on Rough Ground by Adaptive 3D Sensing and High-Speed Landing Gear Adjustment. J. Robot. Mechatron. 2021, 33, 108–118. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. Proceedings of IEEE Conference Computer Vision Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Zhao, Q.; Sheng, T.; Wang, Y.; Tang, Z.; Chen, Y.; Cai, L.; Ling, H. M2det: A single-shot object detector based on multi-level feature pyramid network. Proceedings of AAAI Conference on Artificial Intelligence (AAAI2019), Honolulu, HI, USA, 27 January–1 February 2019; pp. 9259–9266. [Google Scholar]
AdjustSense | Baseline | |||
---|---|---|---|---|
(i) Rotating | (ii) Semi-Reciprocating | (iii) Reciprocating | (iv) LIDAR | |
S: Spatial resolution [] | 0.789 | 6.997 | 2.039 | 1.559 |
T: Temporal resolution [] | 8.097 | 3.959 | 19.57 | 10.00 |
A: Measurement range [] | 359.9 | 539.1 | 55.35 | 360.0 |
Measurement accuracy [] | 6.741 | 6.662 | 6.103 | 9.746 |
2299.2 | 14,934 | 2208.6 | – |
(ii) | (i) × 1 + (iii) × 3 | |
---|---|---|
S: Spatial resolution [] | 6.997 | 6.906 |
T: Temporal resolution [] | 3.959 | 3.612 |
A: Measurement range [] | 539.1 | 525.95 |
AdjustSense (iii) Reciprocating | Baseline (iv) LIDAR | |
---|---|---|
S: Spatial resolution [] | 1.859 | 1.525 |
T: Temporal resolution [] | 19.05 | 10.00 |
A: Measurement range [] | 44.33 | 360.0 |
Measurement accuracy [] | 8.965 | 12.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikura, M.; Pathak, S.; Louhi Kasahara, J.Y.; Yamashita, A.; Asama, H. AdjustSense: Adaptive 3D Sensing System with Adjustable Spatio-Temporal Resolution and Measurement Range Using High-Speed Omnidirectional Camera and Direct Drive Motor. Sensors 2021, 21, 6975. https://doi.org/10.3390/s21216975
Ikura M, Pathak S, Louhi Kasahara JY, Yamashita A, Asama H. AdjustSense: Adaptive 3D Sensing System with Adjustable Spatio-Temporal Resolution and Measurement Range Using High-Speed Omnidirectional Camera and Direct Drive Motor. Sensors. 2021; 21(21):6975. https://doi.org/10.3390/s21216975
Chicago/Turabian StyleIkura, Mikihiro, Sarthak Pathak, Jun Younes Louhi Kasahara, Atsushi Yamashita, and Hajime Asama. 2021. "AdjustSense: Adaptive 3D Sensing System with Adjustable Spatio-Temporal Resolution and Measurement Range Using High-Speed Omnidirectional Camera and Direct Drive Motor" Sensors 21, no. 21: 6975. https://doi.org/10.3390/s21216975
APA StyleIkura, M., Pathak, S., Louhi Kasahara, J. Y., Yamashita, A., & Asama, H. (2021). AdjustSense: Adaptive 3D Sensing System with Adjustable Spatio-Temporal Resolution and Measurement Range Using High-Speed Omnidirectional Camera and Direct Drive Motor. Sensors, 21(21), 6975. https://doi.org/10.3390/s21216975