Optical Fiber Sensors for Structural Monitoring in Power Transformers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensor Configuration and Fabrication
2.2. Sensor Characterization
3. Experimental Results
3.1. Structural Analysis
3.2. Amplitude Characterization
3.3. Frequency Characterization
3.4. Mineral Oil Compatibility
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deng, J.; Xiao, H.; Huo, W.; Luo, M.; May, R.; Wang, A.; Liu, Y. Optical fiber sensor-based detection of partial discharges in power transformers. Opt. Laser Technol. 2001, 33, 305–311. [Google Scholar] [CrossRef]
- Godina, R.; Rodrigues, E.M.G.; Matias, J.C.O.; Catalão, J.P.S. Effect of loads and other key factors on oil-transformer ageing: Sustainability benefits and challenges. Energies 2015, 8, 12147–12186. [Google Scholar] [CrossRef] [Green Version]
- Martins, M.A.; Fialho, M.; Martins, J.; Soares, M.; Cristina, M.; Lopes, R.C.; Campelo, H.M.R. Power transformer end-of-life assessment Pracana case study. IEEE Electr. Insul. Mag. 2011, 27, 15–26. [Google Scholar] [CrossRef]
- Raghavan, A.; Kiesel, P.; Teepe, M.; Cheng, F.; Chen, Q.; Karin, T.; Jung, D.; Mostafavi, S.; Smith, M.; Stinson, R.; et al. Low-Cost Embedded Optical Sensing Systems For Distribution Transformer Monitoring. IEEE Trans. Power Deliv. 2020, 36, 1007–1014. [Google Scholar] [CrossRef]
- Morais, H.; Sousa, T.; Soares, J.; Faria, P.; Vale, Z. Distributed energy resources management using plug-in hybrid electric vehicles as a fuel-shifting demand response resource. Energy Convers. Manag. 2015, 97, 78–93. [Google Scholar] [CrossRef]
- Alemayehu, B.; Kota, A.; Neidhard-Doll, A.; Chodavarapu, V.; Subramanyam, G. Cloud-connected real-time oil condition monitoring of utility transformers using impedance spectroscopy. Instrum. Sci. Technol. 2021, 49, 509–520. [Google Scholar] [CrossRef]
- Gungor, V.C.; Lu, B.; Hancke, G. Opportunities and challenges of wireless sensor networks in smart grid. IEEE Trans. Ind. Electron. 2010, 57, 3557–3564. [Google Scholar] [CrossRef] [Green Version]
- Macià-Sanahuja, C.; Lamela, H.; García-Souto, J.A. Fiber optic interferometric sensor for acoustic detection of partial discharges. J. Opt. Technol. 2007, 74, 122–126. [Google Scholar] [CrossRef]
- Gao, C.; Wang, W.; Song, S.; Wang, S.; Yu, L.; Wang, Y. Localization of partial discharge in transformer oil using Fabry-Pérot optical fiber sensor array. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 2279–2286. [Google Scholar] [CrossRef]
- Ribeiro, A.L.; Eira, N.F.; Sousa, J.M.; Guerreiro, P.; Salcedo, J.R. Multipoint fiber-optic hot-spot sensing network integrated into high power transformer for continuous monitoring. IEEE Sens. J. 2008, 8, 1264–1267. [Google Scholar] [CrossRef]
- Hill, K.; Meltz, G. Fiber Bragg grating technology fundamentals and overview. J. Light. Technol. 1997, 15, 1263–1276. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Zhu, T.; Zhang, J.; Chiang, K.S. Micro-fiber-based FBG sensor for simultaneous measurement of vibration and temperature. IEEE Photonics Technol. Lett. 2013, 25, 1751–1753. [Google Scholar] [CrossRef]
- Jin, L.; Zhang, W.; Zhang, H.; Liu, B.; Zhao, J.; Tu, Q.; Kai, G.; Dong, X. An embedded FBG sensor for simultaneous measurement of stress and temperature. IEEE Photonics Technol. Lett. 2005, 18, 154–156. [Google Scholar] [CrossRef]
- Leal-Junior, A.G.; Marques, C.; Ribeiro, M.R.N.; Pontes, M.J.; Frizera, A. FBG-embedded 3D printed ABS sensing pads: The impact of infill density on sensitivity and dynamic range in force sensors. IEEE Sens. J. 2018, 18, 8381–8388. [Google Scholar] [CrossRef]
- Leal-Junior, A.G.; Díaz, C.A.; Frizera, A.; Marques, C.; Ribeiro, M.R.; Pontes, M.J. Simultaneous measurement of pressure and temperature with a single FBG embedded in a polymer diaphragm. Opt. Laser Technol. 2018, 112, 77–84. [Google Scholar] [CrossRef]
- Rossi, R.; Laura, P. Symmetric and antisymmetric normal modes of a cantilever rectangular plate: Effect of poison’s ratio and a concentrated mass. J. Sound Vib. 1996, 195, 142–148. [Google Scholar] [CrossRef]
- Yap, Y.L.; Toh, W.; Koneru, R.; Lin, K.; Yeoh, K.M.; Lim, C.M.; Lee, J.S.; Plemping, N.A.; Lin, R.; Ng, T.Y.; et al. A non-destructive experimental-cum-numerical methodology for the characterization of 3D-printed materials—Polycarbonate-acrylonitrile butadiene styrene (PC-ABS). Mech. Mater. 2019, 132, 121–133. [Google Scholar] [CrossRef]
- Jingzhu, H.; Dichen, L.; Qingfen, L.; Yang, Y.; Shanshan, L. Electromagnetic vibration noise analysis of transformer windings and core. IET Electr. Power Appl. 2016, 10, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Sader, J. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 1998, 84, 64–76. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.I. Improving the cooling performance of electrical distribution transformer using transformer oil-based MEPCM suspension. Eng. Sci. Technol. Int. J. 2017, 20, 502–510. [Google Scholar] [CrossRef]
- Lelekakis, N.; Wijaya, J.; Martin, D.; Susa, D. The effect of acid accumulation in power-transformer oil on the aging rate of paper insulation. IEEE Electr. Insul. Mag. 2014, 30, 19–26. [Google Scholar] [CrossRef]
- Zhong, W.; Li, F.; Zhang, Z.; Song, L.; Li, Z. Short fiber reinforced composites for fused deposition modeling. Mater. Sci. Eng. A 2001, 301, 125–130. [Google Scholar] [CrossRef]
Test Conditions | Resonant Frequency (Hz) | |
---|---|---|
Vertical | Horizontal | |
Bare structure | 250 | 250 |
Structure enclosed in the box | 300 | 300 |
Structure enclosed in the box with oil | 200 | 200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteiro, C.S.; Rodrigues, A.V.; Viveiros, D.; Linhares, C.; Mendes, H.; Silva, S.O.; Marques, P.V.S.; Tavares, S.M.O.; Frazão, O. Optical Fiber Sensors for Structural Monitoring in Power Transformers. Sensors 2021, 21, 6127. https://doi.org/10.3390/s21186127
Monteiro CS, Rodrigues AV, Viveiros D, Linhares C, Mendes H, Silva SO, Marques PVS, Tavares SMO, Frazão O. Optical Fiber Sensors for Structural Monitoring in Power Transformers. Sensors. 2021; 21(18):6127. https://doi.org/10.3390/s21186127
Chicago/Turabian StyleMonteiro, Catarina S., António V. Rodrigues, Duarte Viveiros, Cassiano Linhares, Hélder Mendes, Susana O. Silva, Paulo V. S. Marques, Sérgio M. O. Tavares, and Orlando Frazão. 2021. "Optical Fiber Sensors for Structural Monitoring in Power Transformers" Sensors 21, no. 18: 6127. https://doi.org/10.3390/s21186127
APA StyleMonteiro, C. S., Rodrigues, A. V., Viveiros, D., Linhares, C., Mendes, H., Silva, S. O., Marques, P. V. S., Tavares, S. M. O., & Frazão, O. (2021). Optical Fiber Sensors for Structural Monitoring in Power Transformers. Sensors, 21(18), 6127. https://doi.org/10.3390/s21186127