Flexible Ultra-Thin Nanocomposite Based Piezoresistive Pressure Sensors for Foot Pressure Distribution Measurement
Abstract
:1. Introduction
Sensors for Foot Pressure Monitoring
2. Materials and Methods
2.1. Preparation of MWCNT/PDMS Nanocomposite Pressure Sensor
2.2. Piezoresistive Sensing Principle
3. Results and Discussion
3.1. Material Characterization
3.2. Electrical Characterization
3.3. Electro-Mechanical Characterization
3.4. Foot Pressure Measurement Using In-Sole Based on MWCNT/PDMS Nanocomposite Pressure Sensor
3.4.1. Preparation of In-Sole Based on MWCNT/PDMS Pressure Sensor
3.4.2. Stationary Phase
3.4.3. Dynamic Phase
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CNT | carbon nanotubes |
PDMS | Polydimethylsiloxane |
MWCNT | Multi-walled carbon nanotubes |
LD | Linear dichroism |
References
- International Diabetic Federation. Ninth IDF Diabetes Atlas, 9th ed. Available online: https://www.diabetesatlas.org/ (accessed on 2 May 2021).
- Chatwin, K.E.; Abbott, C.A.; Boulton, A.J.; Bowling, F.L.; Reeves, N.D. The role of foot pressure measurement in the prediction and prevention of diabetic foot ulceration—A comprehensive review. Diabetes/Metab. Res. Rev. 2020, 36, e3258. [Google Scholar] [CrossRef] [PubMed]
- Barkley, R.M.; Bumgarner, M.R.; Poss, E.M.; Senchina, D.S. Physiological versus perceived foot temperature, and perceived comfort, during treadmill running in shoes and socks of various constructions. Am. J. Undergrad. Res. 2011, 10, 7–14. [Google Scholar] [CrossRef]
- Prompers, L.; Huijberts, M.; Schaper, N.; Apelqvist, J.; Bakker, K.; Edmonds, M.; Holstein, P.; Jude, E.; Jirkovska, A.; Mauricio, D.; et al. Resource utilisation and costs associated with the treatment of diabetic foot ulcers. prospective data from the eurodiale study. Diabetologia 2008, 51, 1826–1834. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.S.; Pannuti, C.M.; Paranhos, K.S.; Tanganeli, J.P.; Laganá, D.C.; Sesma, N.; Duarte, M.; Frigerio, M.L.M.; Cho, S.-C. Effect of occlusal splint and therapeutic exercises on postural balance of patients with signs and symptoms of temporomandibular disorder. Clin. Exp. Dent. Res. 2019, 5, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Moccia, S.; Nucci, L.; Spagnuolo, C.; d’Apuzzo, F.; Piancino, M.G.; Minervini, G. Polyphenols as potential agents in the management of temporomandibular disorders. Appl. Sci. 2020, 10, 5305. [Google Scholar] [CrossRef]
- Avedesian, J.M.; Covassin, T.; Dufek, J.S. The influence of sport-related concussion on lower extremity injury risk: A review of current return-to-play practices and clinical implications. Int. J. Exerc. Sci. 2020, 13, 873. [Google Scholar]
- Yang, Y.; Gao, W.; Zhao, Z. Research on gait cycle recognition with plantar pressure sensors. In Proceedings of the 4th International Conference on Computer Science and Application Engineering, Sanya, China, 20–22 October 2020; pp. 1–5. [Google Scholar]
- Leal-Junior, A.G.; Marques, C. Diaphragm-embedded optical fiber sensors: A review and tutorial. IEEE Sens. J. 2020, 21, 12719–12733. [Google Scholar] [CrossRef]
- Razak, A.H.A.; Zayegh, A.; Begg, R.K.; Wahab, Y. Foot plantar pressure measurement system: A review. Sensors 2012, 12, 9884–9912. [Google Scholar] [CrossRef] [Green Version]
- Pedar-Footwear Pressure Distribution Measurement. 2021. Available online: https://www.novel.de/products/pedar/ (accessed on 3 May 2021).
- Human Gait Analysis. 2021. Available online: https://www.tekscan.com/products-solutions/human-gait-analysis (accessed on 3 May 2021).
- Medilogic Wlan Insole. 2019. Available online: https://medilogic.com/en/medilogic-wlan-insole/ (accessed on 3 May 2021).
- Orpyx si Sensory Insoles. Available online: https://www.orpyx.com/about-orpyx-si (accessed on 3 May 2021).
- Ramirez-Bautista, J.A.; Huerta-Ruelas, J.A.; Chaparro-Cárdenas, S.L.; Hernández-Zavala, A. A review in detection and monitoring gait disorders using in-shoe plantar measurement systems. IEEE Rev. Biomed. Eng. 2017, 10, 299–309. [Google Scholar] [CrossRef]
- Chen, J.; Dai, Y.; Kang, S.; Xu, L.; Gao, S. A concurrent plantar stress sensing and energy harvesting technique by piezoelectric insole device and rectifying circuitry. IEEE Sens. J. 2021. [Google Scholar] [CrossRef]
- Shi, J.; Beeby, S. Textile based ferroelectret for foot pressure sensor. In Proceedings of the 2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Glasgow, UK, 8–10 July 2019; pp. 1–3. [Google Scholar]
- Rajala, S.; Lekkala, J. Plantar shear stress measurements—A review. Clin. Biomech. 2014, 29, 475–483. [Google Scholar] [CrossRef]
- Aqueveque, P.; Osorio, R.; Pastene, F.; Saavedra, F.; Pino, E. Capacitive sensors array for plantar pressure measurement insole fabricated with flexible pcb. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 4393–4396. [Google Scholar]
- Tao, J.; Dong, M.; Li, L.; Wang, C.; Li, J.; Liu, Y.; Bao, R.; Pan, C. Real-time pressure mapping smart insole system based on a controllable vertical pore dielectric layer. Microsys. Nanoeng. 2020, 6, 1–10. [Google Scholar] [CrossRef]
- Jung, Y.; Lee, W.; Jung, K.; Park, B.; Park, J.; Ko, J.; Cho, H. A highly sensitive and flexible capacitive pressure sensor based on a porous three-dimensional pdms/microsphere composite. Polymers 2020, 12, 1412. [Google Scholar] [CrossRef] [PubMed]
- Chortos, A.; Liu, J.; Bao, Z. Pursuing prosthetic electronic skin. Nat. Mater. 2016, 15, 937–950. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chai, R.; Wang, H.; Ye, X. A plantar pressure sensing system with balancing sensitivity based on tailored mwcnts/pdms composites. Micromachines 2018, 9, 466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Wang, Y.L.; Xia, Y.; Wu, X.; Kirk, T.V.; Chen, X.D. A low-cost and highly integrated sensing insole for plantar pressure measurement. Sens.-Bio-Sens. Res. 2019, 26, 100298. [Google Scholar] [CrossRef]
- Sorrentino, I.; Chavez, F.J.A.; Latella, C.; Fiorio, L.; Traversaro, S.; Rapetti, L.; Tirupachuri, Y.; Guedelha, N.; Maggiali, M.; Dussoni, S.; et al. A novel sensorised insole for sensing feet pressure distributions. Sensors 2020, 20, 747. [Google Scholar] [CrossRef] [Green Version]
- Tahir, A.M.; Chowdhury, M.E.; Khandakar, A.; Al-Hamouz, S.; Abdalla, M.; Awadallah, S.; Reaz, M.B.I.; Al-Emadi, N. A systematic approach to the design and characterization of a smart insole for detecting vertical ground reaction force (vgrf) in gait analysis. Sensors 2020, 20, 957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muzaffar, S.; Elfadel, I.A.M. Shoe-integrated, force sensor design for continuous body weight monitoring. Sensors 2020, 20, 3339. [Google Scholar] [CrossRef]
- Faragó, P.; Cirlugea, M.; Hintea, S. A novel smart-shoe architecture for podiatric monitoring. In Proceedings of the 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), Milan, Italy, 7–9 July 2020; pp. 180–183. [Google Scholar]
- Zhao, Y.; Wang, J.; Zhang, Y.; Liu, H.; Chen, Z.; Lu, Y.; Dai, Y.; Xu, L.; Gao, S. Flexible and wearable emg and psd sensors enabled locomotion mode recognition for ioht based in-home rehabilitation. IEEE Sens. J. 2021. [Google Scholar] [CrossRef]
- de Fazio, R.; Perrone, E.; Velázquez, R.; Vittorio, M.D.; Visconti, P. Development of a self-powered piezo-resistive smart insole equipped with low-power ble connectivity for remote gait monitoring. Sensors 2021, 21, 4539. [Google Scholar] [CrossRef]
- Wan, J.; Wang, Q.; Zang, S.; Wang, T.; Liu, G.; Li, C.; Ren, X. Highly stretchable and sensitive liquid-type strain sensor based on a porous elastic rope/elastomer matrix composite structure. Compos. Technol. 2019, 182, 107707. [Google Scholar] [CrossRef]
- Park, J.; Kim, M.; Hong, I.; Kim, T.; Lee, E.; Kim, E.; Ryu, J.-K.; Jo, Y.; Koo, J.; Han, S.; et al. Foot plantar pressure measurement system using highly sensitive crack-based sensor. Sensors 2019, 19, 5504. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, A.F.; Fernandes, A.J.; Martins, R.; Fortunato, E.; Costa, F.M. Laser-induced graphene piezoresistive sensors synthesized directly on cork insoles for gait analysis. Adv. Mater. Technol. 2020, 5, 2000630. [Google Scholar] [CrossRef]
- Mannsfeld, S.; Tee, B.; Stoltenberg, R.; Chen, C.; Barman, S.; Muir, B.; Sokolov, A.; Reese, C.; Bao, Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864. [Google Scholar] [CrossRef]
- Wang, X.; Gu, Y.; Xiong, Z.; Cui, Z.; Zhang, T. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 2014, 26, 1336–1342. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wu, K.; Xu, Z.; Wang, Z.; Meng, Y.; Li, L. Ultrahigh-sensitivity piezoresistive pressure sensors for detection of tiny pressure. ACS Appl. Mater. Interfaces 2018, 10, 20826–20834. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, S.; Li, H.; Wang, B.; Sun, Y.; Xu, Z.; Chen, X.; Wu, K.; Zhang, X.; Xing, F.; et al. The semiconductor/conductor interface piezoresistive effect in an organic transistor for highly sensitive pressure sensors. Adv. Mater. 2019, 31, 1805630. [Google Scholar] [CrossRef] [PubMed]
- Lou, C.; Wang, S.; Liang, T.; Pang, C.; Huang, L.; Run, M.; Liu, X. A graphene-based flexible pressure sensor with applications to plantar pressure measurement and gait analysis. Materials 2017, 10, 1068. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Wang, A.; Zhuang, Y.; Tomita, M.R.; Xu, W. Smart insole: A wearable sensor device for unobtrusive gait monitoring in daily life. IEEE Trans. Ind. Inform. 2016, 12, 2281–2291. [Google Scholar] [CrossRef]
- Pyo, S.; Jo, E.; Kwon, D.-S.; Kim, W.; Chang, W.; Kim, J. Fabrication of carbon nanotube-coated fabric for highly sensitive pressure sensor. In Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; pp. 962–965. [Google Scholar]
- Nobeshima, T.; Uemura, S.; Yoshida, M.; Kamata, T. Stretchable conductor from oriented short conductive fibers for wiring soft electronics. Polym. Bull. 2016, 73, 2521–2529. [Google Scholar] [CrossRef]
- McKnight, M.; Tabor, J.; Agcayazi, T.; Fleming, A.; Ghosh, T.K.; Huang, H.; Bozkurt, A. Fully textile insole seam-line for multimodal sensor mapping. IEEE Sens. J. 2020, 20, 10145–10153. [Google Scholar] [CrossRef]
- Tan, Y.; Ivanov, K.; Mei, Z.; Li, H.; Li, H.; Lubich, L.; Wang, C.; Wang, L. A soft wearable and fully-textile piezoresistive sensor for plantar pressure capturing. Micromachines 2021, 12, 110. [Google Scholar] [CrossRef]
- Heng, W.; Pang, G.; Xu, F.; Huang, X.; Pang, Z.; Yang, G. Flexible insole sensors with stably connected electrodes for gait phase detection. Sensors 2019, 19, 5197. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Khan, Y.; Ting, J.; Zhu, J.; Ono, S.; Zhang, X.; Du, S.; Evans, J.W.; Lu, C.; Arias, A.C. Large-area fabrication of high-performance flexible and wearable pressure sensors. Adv. Electron. Mater. 2020, 6, 1901310. [Google Scholar] [CrossRef]
- Lee, W.; Hong, S.-H.; Oh, H.-W. Characterization of elastic polymer-based smart insole and a simple foot plantar pressure visualization method using 16 electrodes. Sensors 2019, 19, 44. [Google Scholar] [CrossRef] [Green Version]
- Kanoun, O.; Derbel, N. Advanced Sensors for Biomedical Applications. Available online: https://link.springer.com/content/pdf/10.1007/978-3-030-71225-9.pdf (accessed on 10 August 2021).
- Kanoun, O.; Bouhamed, A.; Ramalingame, R.; Bautista-Quijano, J.R.; Rajendran, D.; Al-Hamry, A. Review on conductive polymer/cnts nanocomposites based flexible and stretchable strain and pressure sensors. Sensors 2021, 21, 341. [Google Scholar] [CrossRef]
- Ramalingame, R.; Hu, Z.; Gerlach, C.; Rajendran, D.; Zubkova, T.; Baumann, R.; Kanoun, O. Flexible piezoresistive sensor matrix based on a carbon nanotube pdms composite for dynamic pressure distribution measurement. J. Sens. Sens. Syst. 2019, 8, 1–7. [Google Scholar] [CrossRef]
- Ramalingame, R.; Lakshmanan, A.; Müller, F.; Thomas, U.; Kanoun, O. Highly sensitive capacitive pressure sensors for robotic applications based on carbon nanotubes and pdms polymer nanocomposite. J. Sens. Sens. Syst. 2019, 8, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Kanoun, O.; Müller, C.; Benchirouf, A.; Sanli, A.; Dinh, T.N.; Al-Hamry, A.; Bu, L.; Gerlach, C.; Bouhamed, A. Flexible carbon nanotube films for high performance strain sensors. Sensors 2014, 14, 10042–10071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, E.A.D.; Windmöller, D.; Silva, G.G.; Figueiredo, K.C.D.S. Polydimethylsiloxane membranes containing multi-walled carbon nanotubes for gas separation. Mater. Res. 2017, 20, 1454–1460. [Google Scholar] [CrossRef] [Green Version]
- Husted, H.M.; Llewellyn, T.L. The accuracy of pedometers in measuring walking steps on a treadmill in college students. Int. Exerc. Sci. 2017, 10, 146. [Google Scholar]
- Sushames, A.; Edwards, A.; Thompson, F.; McDermott, R.; Gebel, K. Validity and reliability of fitbit flex for step count, moderate to vigorous physical activity and activity energy expenditure. PLoS ONE 2016, 11, e0161224. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.-Y.; Su, F.-C.; Yang, C.-H.; Wang, S.-H.; Chang, J.-J.; Wu, W.-L.; Lin, H.-T. Effects of speed and incline on lower extremity kinematics during treadmill jogging in healthy subjects. Biomed. Eng. Basis Commun. 2006, 18, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Gerlach, C.; Krumm, D.; Illing, M.; Lange, J.; Kanoun, O.; Odenwald, S.; Hübler, A. Printed mwcnt-pdms-composite pressure sensor system for plantar pressure monitoring in ulcer prevention. IEEE Sens. J. 2015, 15, 3647–3656. [Google Scholar] [CrossRef]
Author | wt. % of CNT | Sensing Element | Sensitivity | Range | Hyst Eresis (%) | Foot Regions | ||
---|---|---|---|---|---|---|---|---|
F. f | M. f | Heel | ||||||
Heng et al. [44] | 0.6 | 6 | 3.63 MPa | 25 N | 8.9 | ✓ | ✓ | |
Wu et al. [45] | - | 11 | 20.9 kPa | 50 kPa | - | ✓ | ✓ | ✓ |
Zhang et al. [23] | 5 | 7 | 11.5 mV/kPa | 265 kPa | 12.75 | ✓ | ✓ | |
Rajendran et al. [47] | 0.3 | 12 | 3.312 k/kPa | 217 kPa | 3.64 | ✓ | ✓ | ✓ |
This work | 0.3 | 11 | 4.4 k/kPa | 330 kpa | 1.7 | ✓ | ✓ | ✓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajendran, D.; Ramalingame, R.; Palaniyappan, S.; Wagner, G.; Kanoun, O. Flexible Ultra-Thin Nanocomposite Based Piezoresistive Pressure Sensors for Foot Pressure Distribution Measurement. Sensors 2021, 21, 6082. https://doi.org/10.3390/s21186082
Rajendran D, Ramalingame R, Palaniyappan S, Wagner G, Kanoun O. Flexible Ultra-Thin Nanocomposite Based Piezoresistive Pressure Sensors for Foot Pressure Distribution Measurement. Sensors. 2021; 21(18):6082. https://doi.org/10.3390/s21186082
Chicago/Turabian StyleRajendran, Dhivakar, Rajarajan Ramalingame, Saravanan Palaniyappan, Guntram Wagner, and Olfa Kanoun. 2021. "Flexible Ultra-Thin Nanocomposite Based Piezoresistive Pressure Sensors for Foot Pressure Distribution Measurement" Sensors 21, no. 18: 6082. https://doi.org/10.3390/s21186082