Direct Comb Vernier Spectroscopy for Fractional Isotopic Ratio Determinations
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kerstel, E.; Gianfrani, L. Advances in laser-based isotope ratio measurements: Selected applications. Appl. Phys. B 2008, 92, 439–449. [Google Scholar] [CrossRef]
- Torn, M.S.; Biraud, S.C.; Still, C.J.; Riley, W.J.; Berry, J.A. Seasonal and interannual variability in 13C composition of ecosystem carbon fluxes in the U.S. Southern great plains. Tellus B Chem. Phys. Meteorol. 2011, 63, 181–195. [Google Scholar] [CrossRef]
- Bauska, T.K.; Baggenstos, D.; Brook, E.J.; Mix, A.C.; Marcott, S.A.; Petrenko, V.V.; Schaefer, H.; Severinghaus, J.P.; Lee, J.E. Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation. Proc. Natl. Acad. Sci. USA 2016, 113, 3465–3470. [Google Scholar] [CrossRef]
- Yakir, D.; da Sternberg, L.S.L. The use of stable isotopes to study ecosystem gas exchange. Oecologia 2000, 123, 297–311. [Google Scholar] [CrossRef]
- Yoshida, N.; Toyoda, S. Constraining the atmospheric N2O budget from intramolecular site preference in N2O isotopomers. Nature 2000, 405, 330–334. [Google Scholar] [CrossRef]
- Assonov, S.S.; Brenninkmeijer, C.A.M.T.; Schuck, J.; Taylor, P. Analysis of 13C and 18O isotope data of CO2 in CARIBIC aircraft samples as tracers of upper troposphere/ lower stratosphere mixing and the global carbon cycle. Atmos. Chem. Phys. 2010, 10, 8575–8599. [Google Scholar] [CrossRef]
- Wolf, B.; Merbold, L.; Decock, C.; Tuzson, B.; Harris, E.; Six, J.; Emmenegger, L.; Mohn, J. First on-line isotopic characterization of N2O above intensively managed grassland. Biogeosciences 2015, 12, 2517–2531. [Google Scholar] [CrossRef]
- Harris, E.; Henne, S.; Hüglin, C.; Zellweger, C.; Tuzson, B.; Ibraim, E.; Emmenegger, L.; Mohn, J.J. The isotopic composition of atmospheric nitrous oxide observed at the high-altitude research station Jungfraujoch, Switzerland. Geophys. Res. Atmos. 2017, 122, 1850–1870. [Google Scholar] [CrossRef]
- Delli Santi, M.G.; Bartalini, S.; Cancio, P.; Galli, I.; Giusfredi, G.; Haraldsson, C.; Mazzotti, D.; Pesonen, A.; De Natale, P. Biogenic Fraction Determination in Fuel Blends by Laser-Based 14CO2 Detection. Adv. Photonics Res. 2021, 2, 2000069. [Google Scholar] [CrossRef]
- Casado, M.; Landais, A.; Masson-Delmotte, V.; Genthon, C.; Kerstel, E.; Kassi, S.; Arnaud, L.; Picard, G.; Prie, F.; Cattani, O.; et al. Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau. Atmos. Chem. Phys. 2016, 13, 8521–8538. [Google Scholar] [CrossRef]
- Wu, T.; Chen, W.; Fertein, E.; Masselin, P.; Gao, X.; Zhang, W.; Wang, Y.; Koeth, J.; Brückner, D.; He, X. Measurement of the D/H, 18O/ 16O, and 1 17O/ 16O Isotope Ratios in Water by Laser Absorption Spectroscopy at 2.73 μm. Sensors 2014, 14, 9027–9045. [Google Scholar] [CrossRef]
- Wei, Z.; Lee, X.; Aemisegger, F. A global database of water vapor isotopes measured with high temporal resolution infrared laser spectroscopy. Sci. Data 2019, 6, 180302. [Google Scholar] [CrossRef]
- Galfond, B.; Riemer, D.; Swart, P. Analysis of signal-tonoise ratio of delta13C-CO2 measurements at carbon capture, utilization and storage injection sites. Int. J. Greenh. Gas Control 2015, 42, 307–318. [Google Scholar] [CrossRef]
- Krevor, S.; Perrin, J.C.; Esposito, A.; Rella, C.; Benson, S. Rapid detection and characterization of surface CO2 leakage through the real-time measurement of 13C signatures in CO2 flux from the ground. Int. J. Greenh. Gas Control 2010, 4, 811–815. [Google Scholar] [CrossRef]
- Ciais, P.; Chris, S.; Govindasamy, B.; Bopp, L.; Brovkin, V.; Canadell, J.; Chhabra, A.; Defries, R.; Galloway, J.; Heimann, M. Carbon and other biogeochemical cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 465–470. [Google Scholar]
- Denk, T.R.A.; Mohn, J.; Decock, C.; Lewicka-Szczebak, D.; Harris, E.; Butterbach-Bahl, K.; Kiese, R.; Wolf, B. The nitrogen cycle: A review of isotope effects and isotope modeling approaches. Soil Biol. Biochem. 2017, 105, 121–137. [Google Scholar] [CrossRef]
- Ostrom, N.E.; Ostrom, P.H. Mining the isotopic complexity of nitrous oxide: A review of challenges and opportunities. Biogeosciences 2017, 132, 359–372. [Google Scholar] [CrossRef]
- Crosson, E.R.; Ricci, K.N.; Richman, B.A.; Chilese, F.C.; Owano, T.G.; Provencal, R.A.; Todd, M.W.; Glasser, J.; Kachanov, A.A.; Paldus, B.A.; et al. Stable isotope ratios using cavity ring-down spectroscopy: Determination of 13C/12C for carbon dioxide in human breath. Anal. Chem. 2002, 74, 2003–2007. [Google Scholar] [CrossRef]
- Thorpe, M.J.; Balslev-Clausen, D.; Kirchner, M.S.; Ye, J. Cavity-enhanced optical frequency comb spectroscopy: Application to human breath analysis. Opt. Express 2008, 1, 2387–2397. [Google Scholar] [CrossRef]
- Yang, T.H.; Heinzle, E.; Wittmann, C. Theoretical aspects of 13C metabolic flux analysis with sole quantification of carbon dioxide labeling. Comput. Biol. Chem. 2005, 29, 121–133. [Google Scholar] [CrossRef]
- Schild, H.; Boyle, S.J.; Schmid, H.M. Infrared spectroscopy of symbiotic stars: Carbon abundances and 12C/13C isotopic ratios. Mon. Not. R. Astron. Soc. 1992, 258, 95–102. [Google Scholar] [CrossRef][Green Version]
- van Geldern, R.; Nowak, M.E.; Zimmer, M.; Szizybalski, A.; Myrttinen, A.; Barth, J.A.C.; Jost, H.-J. Field-Based Stable Isotope Analysis of Carbon Dioxide by Mid-Infrared Laser Spectroscopy for Carbon Capture and Storage Monitoring. Anal. Chem. 2014, 86, 12191–12198. [Google Scholar] [CrossRef]
- Gagliardi, G.; Castrillo, A.; Iannone, R.; Kerstel, E.T.; Gianfrani, L. High-precision determination of the 13CO2/ 12CO2 isotope ratio using a portable 2.008-μm diode-laser spectrometer. Appl. Phys. 2003, 77, 119–124. [Google Scholar] [CrossRef][Green Version]
- Zhou, T.; Wu, T.; Wu, Q.; Ye, C.; Hu, R.; Chen, W.; He, X. Real-time measurement of CO2 isotopologue ratios in exhaled breath by a hollow waveguide based mid-infrared gas sensor. Opt. Express 2020, 28, 10970–10980. [Google Scholar] [CrossRef] [PubMed]
- Scholten, S.K.; Perrella, C.; Anstie, J.D.; White, R.T.; Luiten, A.N. Accurate Optical Number Density Measurement of 12CO2 and 13CO2 with Direct Frequency Comb Spectroscopy. Phys. Rev. Appl. 2019, 12, 034045. [Google Scholar] [CrossRef]
- Coddington, I.; Newbury, N.; Swann, W. Dual-comb spectroscopy. Optica 2016, 3, 414–426. [Google Scholar] [CrossRef] [PubMed]
- Mandon, J.; Guelachvili, G.; Picqué, N. Fourier transform spectroscopy with a laser frequency comb. Nat. Photon. 2009, 3, 99–102. [Google Scholar] [CrossRef]
- Diddams, S.A.; Hollberg, L.; Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 2007, 445, 627–630. [Google Scholar] [CrossRef]
- Siciliani de Cumis, M.; Eramo, R.; Coluccelli, N.; Cassinerio, M.; Galzerano, G.; Laporta, P.; De Natale, P.; Cancio Pastor, P. Tracing part-per-billion line shifts with direct-frequency-comb Vernier spectroscopy. Phys. Rev. A 2015, 91, 012505. [Google Scholar] [CrossRef]
- Rutkowskia, L.; Morvilleb, J. Continuous Vernier filtering of an optical frequency comb for broadband cavity-enhanced molecular spectroscopy. J. Quant. Spec. Rad. Trans. 2017, 187, 204–215. [Google Scholar] [CrossRef]
- Khodabakhsh, A.; Rutkowski, L.; Morville, J.; Foltynowicz, A. Mid-infrared continuous-filtering Vernier spectroscopy using a doubly resonant optical parametric oscillator. Appl. Phys. B 2017, 123, 210. [Google Scholar] [CrossRef]
- Adler, F.; Thorpe, M.J.; Cossel, K.C.; Ye, J. Cavity enhanced direct frequency comb spectroscopy: Technology and applications. Annu. Rev. Anal. Chem. 2010, 3, 175–205. [Google Scholar] [CrossRef]
- Rieker, G.B.; Giorgetta, F.R.; Swann, W.C.; Kofler, J.; Zolot, A.M.; Sinclair, L.C.; Baumann, E.; Cromer, C.; Petron, G.; Sweeney, C.; et al. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica 2014, 1, 290–298. [Google Scholar] [CrossRef]
- Cossel, K.C.; Waxman, E.M.; Finneran, I.A.; Blake, G.A.; Ye, J.; Newbury, N.R. Gas-phase broadband spectroscopy using active sources: Progress, status, and applications. J. Opt. Soc. Am. B 2017, 34, 104–129. [Google Scholar] [CrossRef] [PubMed]
- Siciliani de Cumis, M.; Eramo, R.; Coluccelli, N.; Galzerano, G.; Laporta, P.; Cancio Pastor, P. Multiplexed direct-frequency-comb Vernier spectroscopy of carbon dioxide 2ν1 + ν3 ro-vibrational combination band. J. Chem. Phys. 2018, 148, 114303. [Google Scholar] [CrossRef]
- Picqué, N.; Hänsch, T.W. Frequency comb spectroscopy. Nat. Photonics 2019, 13, 146–157. [Google Scholar] [CrossRef]
- Vodopyanov, K.L. Isotopologues Detection and Quantitative Analysis by Mid-Infrared Dual-Comb Laser Spectroscopy. In Encyclopedia of Analytical Chemistry; John Wiley and Sons, Ltd.: Hoboken, NJ, USA, 2020. [Google Scholar]
- Bailey, D.M.; Zhao, G.; Fleisher, A.J. Precision Spectroscopy of Nitrous Oxide Isotopocules with a Cross-Dispersed Spectrometer and a Mid-Infrared Frequency Comb. Anal. Chem. 2020, 92, 13759–13766. [Google Scholar] [CrossRef] [PubMed]
- Kantnerová, K.; Tuzson, B.; Emmenegger, L.; Bernasconi, S.M.; Mohn, J. Quantifying Isotopic Signatures of N2O Using Quantum Cascade Laser Absorption Spectroscopy. Chimia 2019, 73, 232–238. [Google Scholar] [CrossRef]
- Harris, S.J.; Liisberg, J.; Xia, L.; Wei, J.; Zeyer, K.; Yu, L.; Barthel, M.; Wolf, B.; Kelly, B.F.J.; Cendón, D.I.; et al. N2O isotopocule measurements using laser spectroscopy: Analyzer characterization and intercomparison. Atmos. Meas. Tech. 2020, 13, 2797–2831. [Google Scholar] [CrossRef]
- Zare, R.N.; Kuramoto, D.S.; Haase, C.; Tan, S.M.; Crosson, E.R.; Saad, N.M.R. High-precision optical measurements of 13C/12C isotope ratios in organic compounds. Proc. Natl. Acad. Sci. USA 2009, 106, 10928–10932. [Google Scholar] [CrossRef]
- Dickinson, D.; Bodé, S.; Boeckx, P. Measuring 13C-enriched CO2 in air with a cavity ring-down spectroscopy gas analyser: Evaluation and calibration. Rapid Commun. Mass Spectrom. 2017, 31, 1892–1902. [Google Scholar] [CrossRef]
- Available online: https://en.wikipedia.org/wiki/Wavelet (accessed on 11 August 2021).
- Gordon, I.E.; Rothman, L.S.; Hill, C.; Kochanov, R.V.; Tan, Y.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.V.; et al. The HITRAN2016 Molecular Spectroscopic Database. J. Quan. Spec. Rad. Trans. 2017, 203, 3–69. [Google Scholar] [CrossRef]
- Eramo, R.; Cancio Pastor, P.; Siciliani de Cumis, M. Accurate fit of pressure-broadened molecular line shapes in direct-frequency-comb Vernier spectroscopy. 2021; to be submitted. [Google Scholar]
- Galli, I.; Bartalini, S.; Ballerini, R.; Barucci, M.; Cancio, P.; De Pas, M.; Giusfredi, G.; Mazzotti, D.; Akikusa, N.; De Natale, P. Spectroscopic detection of radiocarbon dioxide at parts-per-quadrillion sensitivity. Optica 2017, 3, 385–388. [Google Scholar] [CrossRef]
Parameter | Global Fit | Weighted-Average of Individual Fits | ||
---|---|---|---|---|
[MHz] | 12,868.8 (6.4) | 5.3 (6.4) | 12,860.8 (6.0) | −2.7 (6.0) |
0.0116(4) | 0.0004 (4) | 0.0116 (4) | 0.0004 (4) | |
Transition a | (201–000) R(18) | CO | ||
[MHz] | 150,041,400.3 (6.0) | −2.6 (6.0) | 150,041,404.3 (5.6) | 1.4 (5.6) |
0.0109 (3) | −0.0002(3) | 0.0107 (2) | −0.0004(2) | |
[MHz/mbar] | 5.3 (3) | −0.6 (3) | 4.5 (3) | −1.4 (3) |
Transition b | (201–000) P(45) | CO | ||
[MHz] | 150,054,269.2 (2.0) | 2.7 (2.0) | 150,054,265.2 (2.1) | −1.3 (2.1) |
0.94 (2) | −0.04(2) | 0.92 (3) | −0.06 (3) | |
[MHz/mbar] | 4.0 (1) | −0.6 (1) | 3.8 (2) | −0.8 (2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siciliani de Cumis, M.; Eramo, R.; Jiang, J.; Fermann, M.E.; Cancio Pastor, P. Direct Comb Vernier Spectroscopy for Fractional Isotopic Ratio Determinations. Sensors 2021, 21, 5883. https://doi.org/10.3390/s21175883
Siciliani de Cumis M, Eramo R, Jiang J, Fermann ME, Cancio Pastor P. Direct Comb Vernier Spectroscopy for Fractional Isotopic Ratio Determinations. Sensors. 2021; 21(17):5883. https://doi.org/10.3390/s21175883
Chicago/Turabian StyleSiciliani de Cumis, Mario, Roberto Eramo, Jie Jiang, Martin E. Fermann, and Pablo Cancio Pastor. 2021. "Direct Comb Vernier Spectroscopy for Fractional Isotopic Ratio Determinations" Sensors 21, no. 17: 5883. https://doi.org/10.3390/s21175883
APA StyleSiciliani de Cumis, M., Eramo, R., Jiang, J., Fermann, M. E., & Cancio Pastor, P. (2021). Direct Comb Vernier Spectroscopy for Fractional Isotopic Ratio Determinations. Sensors, 21(17), 5883. https://doi.org/10.3390/s21175883