A Study of Physical Layer Security in SWIPT-Based Decode-and-Forward Relay Networks with Dynamic Power Splitting
Abstract
:1. Introduction
- We consider a single-input single-output (SISO) system model in which multiple relay nodes harvest energy from a transmitter S and help S to transfer information to the destination in the presence of an eavesdropper. Moreover, partial relay selection protocol is adopted to select the best relay.
- For the SWIPT technique, both dynamic power splitting-based relaying (DPSBR) and static power splitting-based relaying (SPSBR) are considered in our work to give a full picture of the advantages of each method. Specifically, we derive the closed-form expressions in terms of OP and SOP for each scheme. Furthermore, the lower bound of SOP is obtained when the transmit power of S goes to infinity.
- Simulation results are performed to corroborate the exactness of our analysis. Through simulation results, it can be concludes that that DPSBR always obtains a better performance, i.e., OP and SOP, compared to SPSBR.
2. System Model
3. Performance Analysis
3.1. Case 1: Static Power Splitting-Based Relaying
3.1.1. Outage Probability (OP) Analysis
3.1.2. Secrecy Outage Probability (SOP) Analysis
- a.
- Exact Analysis
- b.
- Asymptotic Analysis
3.2. Case 2: Dynamic Power Splitting-Based Relaying
3.2.1. OP Analysis
3.2.2. SOP Analysis
- a.
- Exact Analysis
- b.
- Asymptotic Analysis
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jasiński, M.; Majtczak, P.; Malinowski, A. Fuzzy logic in decision support system as a simple Human/Internet of Things interface for shunt active power filter. Bull. Pol. Acad. Sci. Tech. Sci. 2016, 64, 877–886. [Google Scholar] [CrossRef] [Green Version]
- Kiciński, J. Green energy transformation in Poland. Bull. Pol. Acad. Sci. Tech. Sci. 2021, 69. [Google Scholar] [CrossRef]
- Nguyen, P.X.; Tran, D.H.; Onireti, O.; Tin, P.T.; Nguyen, S.Q.; Chatzinotas, S.; Vincent Poor, H. Backscatter-Assisted Data Offloading in OFDMA-Based Wireless-Powered Mobile Edge Computing for IoT Networks. IEEE Internet Things J. 2021, 8, 9233–9243. [Google Scholar] [CrossRef]
- Cong, R.; Zhao, Z.; Min, G.; Feng, C.; Jiang, Y. EdgeGO: A Mobile Resource-sharing Framework for 6G Edge Computing in Massive IoT Systems. IEEE Internet Things J. 2021. [Google Scholar] [CrossRef]
- Fang, X.; Feng, W.; Wei, T.; Chen, Y.; Ge, N.; Wang, C.X. 5G Embraces Satellites for 6G Ubiquitous IoT: Basic Models for Integrated Satellite Terrestrial Networks. IEEE Internet Things J. 2021. [Google Scholar] [CrossRef]
- Tran, D.H.; Nguyen, V.D.; Symeon, C.; Vu, X.T.; Bjorn, O. UAV Relay-Assisted Emergency Communications in IoT Networks: Resource Allocation and Trajectory Optimization. arXiv 2020, arXiv:2008.00218. [Google Scholar]
- Jung, H.J.; Park, J.; Kim, I.H. Investigation of Applicability of Electromagnetic Energy Harvesting System to Inclined Stay Cable Under Wind Load. IEEE Trans. Magn. 2012, 48, 3478–3481. [Google Scholar] [CrossRef]
- Tan, Y.K.; Panda, S.K. Self-Autonomous Wireless Sensor Nodes with Wind Energy Harvesting for Remote Sensing of Wind-Driven Wildfire Spread. IEEE Trans. Instrum. Meas. 2011, 60, 1367–1377. [Google Scholar] [CrossRef]
- Sang, Y.; Huang, X.; Liu, H.; Jin, P. A Vibration-Based Hybrid Energy Harvester for Wireless Sensor Systems. IEEE Trans. Magn. 2012, 48, 4495–4498. [Google Scholar] [CrossRef]
- Qiu, J.; Liu, X.; Chen, H.; Xu, X.; Wen, Y.; Li, P. A Low-Frequency Resonant Electromagnetic Vibration Energy Harvester Employing the Halbach Arrays for Intelligent Wireless Sensor Networks. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef]
- Hieu, T.D.; Dung, L.T.; Kim, B.S. Stability-aware geographic routing in energy harvesting wireless sensor networks. Sensors 2016, 16, 696. [Google Scholar] [CrossRef] [Green Version]
- Tavana, M.; Ozger, M.; Baltaci, A.; Schleicher, B.; Schupke, D.; Cavdar, C. Wireless Power Transfer for Aircraft IoT Applications: System Design and Measurements. IEEE Internet Things J. 2021. [Google Scholar] [CrossRef]
- Nguyen, B.C.; Hoang, T.M.; Tran, P.T.; Nguyen, T.N. Outage probability of NOMA system with wireless power transfer at source and full-duplex relay. AEU-Int. J. Electron. Commun. 2020, 116, 152957. [Google Scholar] [CrossRef]
- Hieu, T.D.; Duy, T.T.; Choi, S.G. Performance evaluation of relay selection schemes in beacon-assisted dual-hop cognitive radio wireless sensor networks under impact of hardware noises. Sensors 2018, 18, 1843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Liu, J.; Zhai, C. Wireless Power Transfer-Based Multi-Pair Two-Way Relaying With Massive Antennas. IEEE Trans. Wirel. Commun. 2017, 16, 7672–7684. [Google Scholar] [CrossRef]
- Lu, W.; Si, P.; Huang, G.; Han, H.; Qian, L.; Zhao, N.; Gong, Y. SWIPT Cooperative Spectrum Sharing for 6G-Enabled Cognitive IoT Network. IEEE Internet Things J. 2020. [Google Scholar] [CrossRef]
- Wang, J.; Wang, G.; Li, B.; Yang, H.; Hu, Y.; Schmeink, A. Massive MIMO Two-Way Relaying Systems with SWIPT in IoT Networks. IEEE Internet Things J. 2020. [Google Scholar] [CrossRef]
- Garg, N.; Zhang, J.; Ratnarajah, T. Rate-Energy Balanced Precoding Design for SWIPT based Two-Way Relay Systems. IEEE J. Sel. Top. Signal Process. 2021. [Google Scholar] [CrossRef]
- Tin, P.T.; Nguyen, T.N.; Tran, M.; Trang, T.T.; Sevcik, L. Exploiting direct link in two-way half-duplex sensor network over block rayleigh fading channel: Upper bound ergodic capacity and exact SER analysis. Sensors 2020, 20, 1165. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Lu, Y.; Huang, Y.; Zhang, P. Neural Network-Based Relay Selection in Two-Way SWIPT-Enabled Cognitive Radio Networks. IEEE Trans. Veh. Technol. 2020, 69, 6264–6274. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Tran, P.T.; Voznak, M. Wireless energy harvesting meets receiver diversity: A successful approach for two-way half-duplex relay networks over block Rayleigh fading channel. Comput. Netw. 2020, 172, 107176. [Google Scholar] [CrossRef]
- Dinh Tran, H.; Trung Tran, D.; Choi, S.G. Secrecy performance of a generalized partial relay selection protocol in underlay cognitive networks. Int. J. Commun. Syst. 2018, 31, e3806. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, Y.; Jiang, X.; Kasahara, S. Secure Millimeter-Wave Ad Hoc Communications Using Physical Layer Security. IEEE Trans. Inf. Forensics Secur. 2021. [Google Scholar] [CrossRef]
- Wijewardena, M.; Samarasinghe, T.; Hemachandra, K.T.; Atapattu, S.; Evans, J.S. Physical Layer Security for Intelligent Reflecting Surface Assisted Two–Way Communications. IEEE Commun. Lett. 2021. [Google Scholar] [CrossRef]
- Hieu, T.D.; Duy, T.T.; Kim, B.S. Performance Enhancement for Multihop Harvest-to-Transmit WSNs With Path-Selection Methods in Presence of Eavesdroppers and Hardware Noises. IEEE Sens. J. 2018, 18, 5173–5186. [Google Scholar] [CrossRef]
- Hoang An, N.; Tran, M.; Nguyen, T.N.; Ha, D.H. Physical layer security in a hybrid TPSR two-way half-duplex relaying network over a Rayleigh fading channel: Outage and intercept probability analysis. Electronics 2020, 9, 428. [Google Scholar] [CrossRef] [Green Version]
- Tin, P.T.; Dinh, B.H.; Nguyen, T.N.; Ha, D.H.; Trang, T.T. Power Beacon-Assisted Energy Harvesting Wireless Physical Layer Cooperative Relaying Networks: Performance Analysis. Symmetry 2020, 12, 106. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Yang, W.; Cai, Y.; Wang, M. Secure mmWave UAV-Enabled SWIPT Networks Based on Random Frequency Diverse Arrays. IEEE Internet Things J. 2021, 8, 528–540. [Google Scholar] [CrossRef]
- Wang, W.; Tang, J.; Zhao, N.; Liu, X.; Zhang, X.Y.; Chen, Y.; Qian, Y. Joint Precoding Optimization for Secure SWIPT in UAV-Aided NOMA Networks. IEEE Trans. Commun. 2020, 68, 5028–5040. [Google Scholar] [CrossRef]
- Xu, D.; Zhu, H. Secure Transmission for SWIPT IoT Systems With Full-Duplex IoT Devices. IEEE Internet Things J. 2019, 6, 10915–10933. [Google Scholar] [CrossRef]
- Deng, Z.; Li, Q.; Zhang, Q.; Yang, L.; Qin, J. Beamforming Design for Physical Layer Security in a Two-Way Cognitive Radio IoT Network With SWIPT. IEEE Internet Things J. 2019, 6, 10786–10798. [Google Scholar] [CrossRef]
- Ha, D.H.; Nguyen, T.N.; Tran, M.H.Q.; Li, X.; Tran, P.T.; Voznak, M. Security and Reliability Analysis of a Two-Way Half-Duplex Wireless Relaying Network Using Partial Relay Selection and Hybrid TPSR Energy Harvesting at Relay Nodes. IEEE Access 2020, 8, 187165–187181. [Google Scholar] [CrossRef]
- Tin, P.T.; Nguyen, T.N.; Tran, D.H.; Voznak, M.; Phan, V.D.; Chatzinotas, S. Performance Enhancement for Full-Duplex Relaying with Time-Switching-Based SWIPT in Wireless Sensors Networks. Sensors 2021, 21, 3847. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.N.; Tran, M.; Nguyen, T.L.; Ha, D.H.; Voznak, M. Performance analysis of a user selection protocol in cooperative networks with power splitting protocol-based energy harvesting over Nakagami-m/Rayleigh channels. Electronics 2019, 8, 448. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Zou, Y.; Cao, W.; Chen, Z.; Tsiftsis, T.A.; Bhatnagar, M.R.; De Lamare, R.C. Impact of Hardware Impairments on Outage Performance of Hybrid Satellite-Terrestrial Relay Systems. IEEE Access 2019, 7, 35103–35112. [Google Scholar] [CrossRef]
- Phu, T.T.; Phan, D.; Ha, D.H.; Nguyen, T.N.; Tran, M.; Voznak, M. Nonlinear energy harvesting based power splitting relaying in full-duplex AF and DF relaying networks: System performance analysis. Proc. Est. Acad. Sci. 2020, 69, 368–381. [Google Scholar]
- Bankey, V.; Upadhyay, P.K. Physical Layer Security of Multiuser Multirelay Hybrid Satellite-Terrestrial Relay Networks. IEEE Trans. Veh. Technol. 2019, 68, 2488–2501. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phan, V.-D.; Nguyen, T.N.; Le, A.V.; Voznak, M. A Study of Physical Layer Security in SWIPT-Based Decode-and-Forward Relay Networks with Dynamic Power Splitting. Sensors 2021, 21, 5692. https://doi.org/10.3390/s21175692
Phan V-D, Nguyen TN, Le AV, Voznak M. A Study of Physical Layer Security in SWIPT-Based Decode-and-Forward Relay Networks with Dynamic Power Splitting. Sensors. 2021; 21(17):5692. https://doi.org/10.3390/s21175692
Chicago/Turabian StylePhan, Van-Duc, Tan N. Nguyen, Anh Vu Le, and Miroslav Voznak. 2021. "A Study of Physical Layer Security in SWIPT-Based Decode-and-Forward Relay Networks with Dynamic Power Splitting" Sensors 21, no. 17: 5692. https://doi.org/10.3390/s21175692