Polymer–Plasticizer Coatings for BTEX Detection Using Quartz Crystal Microbalance
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Sorption Results
3.2. Sensor Response Model
3.3. Optimum Film
3.4. Stability of the Plasticizer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samet, J.M.; Marbury, M.C.; Spengler, J.D. Health effects and sources of indoor air pollution. Part I. Am. Rev. Respir. Dis 1987, 136, 1486–1508. [Google Scholar] [CrossRef]
- Spengler, J.D.; Sexton, K. Indoor air pollution: A public health perspective. Science 1983, 221, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Montero-Montoya, R.; López-Vargas, R.; Arellano-Aguilar, O. Volatile Organic Compounds in Air: Sources, Distribution, Exposure and Associated Illnesses in Children. Ann. Glob. Health 2018, 84, 225–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehlman, M.A. Carcinogenic Effects of Benzene: Cesare Maltoni’s Contributions. Ann. N. Y. Acad. 2002, 982, 137–148. [Google Scholar] [CrossRef]
- Tabler, S.K. EPA’s Program for Establishing National Emission Standards for Hazardous Air Pollutants. J. Air Pollut. Control Assoc. 1984, 34, 532–536. [Google Scholar] [CrossRef]
- Koester, C.J.; Moulik, A. Trends in Environmental Analysis. Anal. Chem. 2005, 77, 3737–3754. [Google Scholar] [CrossRef] [Green Version]
- Djozan, D.; Pournaghi-Azar, M.H.; Bahar, S. Modified Polypyrrole with Tetrasulfonated Nickel Phthalocyanine as a Fiber for Solid-Phase Microextraction. Application to the Extraction of BTEX Compounds from Water Samples. Chromatographia 2004, 59, 595–599. [Google Scholar] [CrossRef]
- Chung, H.; Ku, M.S. Comparison of Near-Infrared, Infrared, and Raman Spectroscopy for the Analysis of Heavy Petroleum Products. Appl. Spectrosc. 2000, 54, 239–245. [Google Scholar] [CrossRef]
- Chung, H.; Lee, J.S.; Ku, M.S. Feasibility of Simultaneous Measurement of Xylene Isomers and Other Hydrocarbons in p-Xylene Production Processes Using Near-Infrared Spectroscopy. Appl. Spectrosc. 1998, 52, 885–889. Available online: http://as.osa.org/abstract.cfm?URI=as-52-6-885 (accessed on 5 June 2021). [CrossRef]
- Vogt, F.; Tacke, M.; Jakusch, M.; Mizaikoff, B.A. UV spectroscopic method for monitoring aromatic hydrocarbons dissolved in water. Anal. Chim. Acta. 2000, 422, 187–198. [Google Scholar] [CrossRef]
- Rösler, S.; Lucklum, R.; Borngräber, R.; Hartmann, J.; Hauptmann, P. Sensor system for the detection of organic pollutants in water by thickness shear mode resonators. Sens. Actuators B Chem. 1998, 48, 415–424. [Google Scholar] [CrossRef]
- Gao, P.L.; Xie, Z.G.; Zheng, M. Chiral carbon dots-based nanosensors for Sn(II) detection and lysine enantiomers recognition. Sens. Actuators B Chem. 2020, 319, 15. [Google Scholar] [CrossRef]
- Wohltjen, H.; Ballantine, D.S.; Jarvis, N.L. Vapor Detection with Surface Acoustic Wave Microsensors. Chem. Sens. Microinstrum. 1989, 403, 157–175. [Google Scholar]
- Cheeke, J.D.N.; Tashtoush, N.; Eddy, N. Surface acoustic wave humidity sensor based on the changes in the viscoelastic properties of a polymer film. In Proceedings of the 1996 IEEE Ultrasonics Symposium, San Antonio, TX, USA, 3–6 November 1996. [Google Scholar]
- Kuchmenko, T.A.; Lvova, L.B. A Perspective on Recent Advances in Piezoelectric Chemical Sensors for Environmental Monitoring and Foodstuffs Analysis. Chemosensors 2019, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, P.; Alderson, L.; Bender, F.; Ricco, A.J.; Josse, F. Investigation of Polymer–Plasticizer Blends as SH-SAW Sensor Coatings for Detection of Benzene in Water with High Sensitivity and Long-Term Stability. ACS Sens. 2017, 2, 157–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pejcic, B.; Crooke, E.; Boyd, L.; Doherty, C.M.; Hill, A.J.; Myers, M.; White, C. Using Plasticizers to Control the Hydrocarbon Selectivity of a Poly(Methyl Methacrylate)-Coated Quartz Crystal Microbalance Sensor. Anal. Chem. 2012, 84, 8564–8570. [Google Scholar] [CrossRef] [PubMed]
- Kaur, K.; Iyer, A.R.; Campbell, S.W.; Bhethanabotla, V.R. Sorption of Benzene, Toluene, and Ethylbenzene by Poly(ethyl methacrylate) and Plasticized Poly(ethyl methacrylate) at 298.15 K Using a Quartz Crystal Microbalance. J. Chem. Eng. Data 2020, 65, 5046–5054. [Google Scholar] [CrossRef]
- Pejcic, B.; Myers, M.; Ranwala, N.; Boyd, L.; Baker, M.; Ross, A. Modifying the response of a polymer-based quartz crystal microbalance hydrocarbon sensor with functionalized carbon nanotubes. Talanta 2011, 85, 1648–1657. [Google Scholar] [CrossRef]
- Schädle, T.; Pejcic, B.; Myers, M.; Mizaikoff, B. Fingerprinting oils in water via their dissolved VOC pattern using mid-infrared sensors. Anal. Chem. 2014, 86, 9512–9517. [Google Scholar] [CrossRef] [PubMed]
- Sothivelr, K.; Bender, F.; Josse, F.; Ricco, A.J.; Yaz, E.E.; Mohler, R.E.; Kolhatkar, R. Detection and Quantification of Aromatic Hydrocarbon Compounds in Water Using SH-SAW Sensors and Estimation-Theory-Based Signal Processing. ACS Sens. 2016, 1, 63–72. [Google Scholar] [CrossRef]
- Li, Z.; Jones, Y.; Hossenlopp, J.; Cernosek, R.; Josse, F. Analysis of Liquid-Phase Chemical Detection Using Guided Shear Horizontal-Surface Acoustic Wave Sensors. Anal. Chem. 2005, 77, 4595–4603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adapa, D. Sorption of Benzene, Tolueneand Ethylbenzeneby Plasticized PEMA and PEMA/PMMA Sensing Films Using a Quartz Crystal Microbalance (QCM) at 298.15K. Master’s Thesis, University of South Florida, Tampa, FL, USA, 2019. [Google Scholar]
- Iyer, A.R.; Samuelson, J.J.; Barone, G.F.; Campbell, S.W.; Bhethanabotla, V.R. Sorption of Benzene, Dichloroethane, Dichloromethane, and Chloroform by Poly(ethylene glycol), Polycaprolactone, and Their Copolymers at 298.15 K Using a Quartz Crystal Microbalance. J. Chem. Eng. Data 2017, 62, 2755–2760. [Google Scholar] [CrossRef]
- Iyer, A.R.; Samuelson, J.J.; Campbell, S.W.; Bhethanabotla, V.R. Sorption of Benzene, Toluene, and Ethylbenzene at low concentration by Plasticized Poly (ethyl methacrylate) and Polystyrene polymers Using Quartz Crystal Microbalance at 298.15K. J. Chem. Eng. Data 2021, 66, 3354–3359. [Google Scholar] [CrossRef]
- Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 1959, 155, 206–222. [Google Scholar] [CrossRef]
- Masaro, L.; Zhu, X.X. Physical models of diffusion for polymer solutions, gels and solids. Prog. Polym. Sci. 1999, 24, 731–775. [Google Scholar] [CrossRef]
- Wang, J.; GangaRao, H.; Liang, R.; Liu, W. Durability and prediction models of fiber-reinforced polymer composites under various environmental conditions: A critical review. J. Reinf. Plast. Compos. 2016, 35, 179–211. [Google Scholar] [CrossRef]
- Bender, F.; Josse, F.; Ricco, A.J. Influence of ambient parameters on the response of polymer-coated SH-surface acoustic wave sensors to aromatic analytes in liquid-phase detection. In Proceedings of the 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS), San Francisco, CA, USA, 2–5 May 2011. [Google Scholar]
- Mensah-Brown, A.K.; Wenzel, M.J.; Josse, F.J.; Yaz, E.E. Near Real-Time Monitoring of Organophosphate Pesticides in the Aqueous-Phase Using SH-SAW Sensors Including Estimation-Based Signal Analysis. IEEE Sens. J. 2009, 9, 1817–1824. [Google Scholar] [CrossRef]
- Zellers, E.; Han, M. Effects of temperature and humidity on the performance of polymer-coated surface acoustic wave vapor sensor arrays. Anal. Chem. 1996, 68, 2409–2418. [Google Scholar] [CrossRef] [PubMed]
Plasticizer | Structure | MW, g/mol | , g/cm3 |
---|---|---|---|
diisononyl cyclohexane-1,2-dicarboxylate (DINCH) | | 424.70 | 0.95 |
Diisooctyl azelate (DIOA) | | 412.70 | 0.92 |
n-butyl stearate (BS) | | 340.60 | 0.85 |
Polymer | Structure | MW, g/mol | , g/cm3 |
---|---|---|---|
Poly(methyl methacrylate) (PMMA) | | 996,000 | 1.20 |
Poly(ethyl methacrylate) (PEMA) | | 340,000 | 1.11 |
Polystyrene (PS) | | 280,000 | 1.05 |
Poly(styrene-block-methyl methacrylate) (PS/ PMMA) | | 30,000 | N/A |
Polymer–Plasticizer-Solvent | Hansen Solubility Parameter (MPa1/2) | Glass Transition Temperature (°C) |
---|---|---|
Poly(methyl methacrylate) (PMMA) | 18.6 | 105 |
Poly(ethyl methacrylate) (PEMA) | 18.4 | 66 |
Polystyrene (PS) | 18.6 | 100 |
Diisononyl cyclohexane-1,2-dicarboxylate (DINCH) | 15.4 | - |
Diisooctyl azelate (DIOA) | 16.7 | - |
n-butyl stearate (BS) | 15.4 | - |
Benzene | 18.5 | - |
Toluene | 18.2 | - |
Ethylbenzene | 17.9 | - |
Solvent | Film | |
---|---|---|
Benzene | PEMA-DINCH | 766 |
Toluene | PEMA-DINCH | 1908 |
Ethylbenzene | PEMA-DINCH | 3899 |
Benzene | PEMA-DIOA | 693 |
Toluene | PEMA-DIOA | 1887 |
Ethylbenzene | PEMA-DIOA | 4181 |
Benzene | PS-BS | 318 |
Toluene | PS-BS | 818 |
Ethylbenzene | PS-BS | 1946 |
Analytes | Tau (τ), Sec | Frequency Shifts (Hz) |
---|---|---|
Benzene | 41 | 6 |
Toluene | 91 | 16 |
Analyte 1 | Analyte 2 | Ratios | y1,amb | y2,amb | y1,act | y2,act |
---|---|---|---|---|---|---|
Benzene | Toluene | (20:80) | 0.0001 | 0.0007 | 0.0002 | 0.0007 |
Benzene | Toluene | (50:50) | 0.0006 | 0.0004 | 0.0005 | 0.0005 |
Benzene | Toluene | (60:40) | 0.0007 | 0.0003 | 0.0007 | 0.0004 |
Benzene | Toluene | (80:20) | 0.0009 | 0.0001 | 0.0009 | 0.0002 |
Benzene | Toluene | (40:60) | 0.0004 | 0.0005 | 0.0004 | 0.0006 |
Analyte 1 | Analyte 2 | Analyte 3 | Ratios | y1,amb | y2,amb | y3,amb | y1,act | y2,act | y3,act |
---|---|---|---|---|---|---|---|---|---|
Benzene | Toluene | Ethylbenzene | (1:1:1) | 0.003 | 0.0008 | 0.0002 | 0.003 | 0.0007 | 0.0002 |
Benzene | Toluene | Ethylbenzene | (1:1:3) | 0.001 | 0.0008 | 0.0003 | 0.002 | 0.0005 | 0.0004 |
Benzene | Toluene | Ethylbenzene | (1:3:1) | 0.001 | 0.002 | 0.0001 | 0.002 | 0.001 | 0.0001 |
Polymer–Plasticizer | Benzene | Toluene | Ethylbenzene | τT/τB | τEB/τT | τEB/τB |
---|---|---|---|---|---|---|
PMMA–DINCH (15%) | τ = 193 | τ = 304 | τ = 303 | 1.57 | 1.00 | 1.57 |
Δf = 65 | Δf=55 | Δf = 55 | ||||
PMMA–DIOA (15%) | τ = 250 | τ = 257 | τ = 333 | 1.03 | 1.30 | 1.33 |
Δf = 146 | Δf = 127 | Δf = 119 | ||||
PMMA–BS (15%) | τ = 65 | τ = 60 | τ = 90 | 0.93 | 1.49 | 1.38 |
Δf = 221 | Δf = 207 | Δf = 200 | ||||
PMMA/PS–DINCH (10%) | τ = 248 | τ = 738 | τ = 712 | 2.97 | 0.97 | 2.87 |
Δf = 29 | Δf = 26 | Δf = 30 | ||||
PMMA/PS–DIOA (15%) | τ = 156 | τ = 169 | τ = 228 | 1.09 | 1.35 | 1.47 |
Δf = 166 | Δf = 147 | Δf = 141 | ||||
PMMA/PS–BS (10%) | τ = 104 | τ = 109 | τ = 137 | 1.05 | 1.25 | 1.32 |
Δf = 128 | Δf = 125 | Δf = 116 | ||||
PEMA–DINCH (5%) | τ = 25 | τ = 40 | τ = 63 | 1.57 | 1.59 | 2.49 |
Δf = 102 | Δf = 89 | Δf = 79 | ||||
PEMA–DIOA (5%) | τ = 204 | τ = 281 | τ = 426 | 1.37 | 1.52 | 2.09 |
Δf = 145 | Δf = 129 | Δf = 120 | ||||
PEMA–BS (5%) | τ = 47 | τ = 77 | τ = 88 | 1.65 | 1.14 | 1.89 |
Δf = 64 | Δf = 63 | Δf = 55 | ||||
PS–DINCH (15%) | τ = 170 | τ = 299 | τ = 372 | 1.76 | 1.24 | 2.19 |
Δf = 60 | Δf = 51 | Δf = 52 | ||||
PS–DIOA (15%) | τ = 94 | τ = 286 | τ = 311 | 3.03 | 1.09 | 3.29 |
Δf = 37 | Δf = 33 | Δf = 33 | ||||
PS–BS (15%) | τ = 173 | τ = 243 | τ = 586 | 1.40 | 2.41 | 3.37 |
Δf = 42 | Δf = 33 | Δf = 37 |
Polymer–Plasticizer | Benzene | Toluene | Ethylbenzene | τT/τB | τEB/τT | τEB/τB |
---|---|---|---|---|---|---|
PEMA–DINCH (5%) | τ = 155 | τ = 240 | τ = 640 | 1.55 | 2.67 | 4.13 |
PEMA–DIOA (5%) | τ =220 | τ =380 | τ = 620 | 1.73 | 1.63 | 2.82 |
PS–BS (15%) | τ = 50 | τ = 107 | τ = 450 | 2.14 | 4.21 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iyer, A.; Mitevska, V.; Samuelson, J.; Campbell, S.; Bhethanabotla, V.R. Polymer–Plasticizer Coatings for BTEX Detection Using Quartz Crystal Microbalance. Sensors 2021, 21, 5667. https://doi.org/10.3390/s21165667
Iyer A, Mitevska V, Samuelson J, Campbell S, Bhethanabotla VR. Polymer–Plasticizer Coatings for BTEX Detection Using Quartz Crystal Microbalance. Sensors. 2021; 21(16):5667. https://doi.org/10.3390/s21165667
Chicago/Turabian StyleIyer, Abhijeet, Veselinka Mitevska, Jonathan Samuelson, Scott Campbell, and Venkat R. Bhethanabotla. 2021. "Polymer–Plasticizer Coatings for BTEX Detection Using Quartz Crystal Microbalance" Sensors 21, no. 16: 5667. https://doi.org/10.3390/s21165667
APA StyleIyer, A., Mitevska, V., Samuelson, J., Campbell, S., & Bhethanabotla, V. R. (2021). Polymer–Plasticizer Coatings for BTEX Detection Using Quartz Crystal Microbalance. Sensors, 21(16), 5667. https://doi.org/10.3390/s21165667