The Effect of Chemical Corrosion on Mechanics and Failure Behaviour of Limestone Containing a Single Kinked Fissure
Abstract
:1. Introduction
2. Experimental Set-Ups
2.1. Specimen Preparation
2.2. Preparation of the Chemical Solutions
2.3. Testing Procedure
3. Experimental Results
3.1. Strength Characteristics after Chemical Corrosion
3.2. Acoustic Emission Behaviours of Kinked Fissures
3.3. Acoustic Emission Behaviours of Kinked Fissures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bobet, A.; Einstein, H.H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int. J. Rock Mech. Min. Sci. 1998, 35, 863–888. [Google Scholar] [CrossRef]
- Huang, D.; Jin, H.H.; Huang, R.Q. Mechanism of fracture mechanics and physical model test of rocks crack expanding under tension-shear stress. Rock Soil Mech. 2011, 32, 997–1002. [Google Scholar]
- Huang, Y.H.; Yang, S.Q.; Zhao, J. Three-dimensional numerical simulation on triaxial failure mechanical behavior of rock-like specimen containing two unparallel fissures. Rock Mech. Rock Eng. 2016, 49, 4711–4729. [Google Scholar] [CrossRef]
- Wong, R.H.C.; Chau, K.T.; Tang, C.A.; Lin, P. Analysis of crack coalescence in rock-like materials containing three flaws—Part I: Experimental approach. Int. J. Rock Mech. Min. Sci. 2001, 38, 909–924. [Google Scholar] [CrossRef]
- Wong, L.N.Y.; Einstein, H.H. Crack coalescence in molded gypsum and carrara marble: Part I. macroscopic observations and interpretation. Rock Mech. Rock Eng. 2009, 42, 475–511. [Google Scholar] [CrossRef]
- Fan, L.F.; Wong, L.N.Y. Stress wave transmission across a filled joint with different loading/unloading behavior. Int. J. Rock Mech. Min. Sci. 2013, 60, 227–234. [Google Scholar] [CrossRef]
- Yang, S.Q. Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation failure. Eng. Fract. Mech. 2011, 78, 3059–3081. [Google Scholar] [CrossRef]
- Yang, S.Q.; Jing, H.W. Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression. Int. J. Fract. 2011, 168, 227–250. [Google Scholar] [CrossRef]
- Yang, S.Q.; Yang, D.S.; Jing, H.W.; Li, Y.H.; Wang, S.Y. An experimental study of the fracture coalescence behaviour of brittle sandstone specimens containing three fissures. Rock Mech. Rock Eng. 2012, 45, 563–582. [Google Scholar] [CrossRef]
- Tang, C.A.; Kou, S.Q. Crack propagation and coalescence in brittle materials under compression. Eng. Fract. Mech. 1998, 61, 311–324. [Google Scholar] [CrossRef]
- Tang, C.A.; Lin, P.; Wong, R.; Chau, K.T. Analysis of crack coalescence in rock-like materials containing three flaws—Part II: Numerical approach. Int. J. Rock Mech. Min. Sci. 2001, 38, 925–939. [Google Scholar] [CrossRef]
- Huang, D.; Gu, D.M.; Yang, C.; Huang, R.Q.; Fu, G.Y. Investigation on mechanical behaviors of sandstone with two pre-existing flaws under triaxial compression. Rock Mech. Rock Eng. 2016, 49, 375–399. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Zhuang, X.Y. Cracking elements: A self-propagating strong discontinuity embedded approach for quasi-brittle fracture. Finite Elem. Anal. Desgin 2018, 144, 84–100. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Zhuang, X.Y.; Lackner, R. Stability analysis of shotcrete supported crown of NATM tunnels with Discontinuity Layout Optimization. Int. J. Numer. Anal. Methods Geomech. 2018, 42, 1199–1216. [Google Scholar] [CrossRef]
- Fan, L.F.; Yi, X.W.; Ma, G.W. Numerical manifold method (NMM) simulation of stress wave propagation through fractured rock mass. Int. J. Appl. Mech. 2013, 5, 249–268. [Google Scholar] [CrossRef]
- Vitek, V. Plane strain stress intensity factors for branched cracks. Int. J. Fract. 1977, 13, 481–501. [Google Scholar]
- Liu, D.Y.; Zhu, K.S.; Fan, J.W. Strength properties of rock mass with bidirectional intermittent cross joints. J. Chongqing Inst. Archit. Eng. 1991, 13, 40–46. [Google Scholar]
- Isida, M.; Noguchi, H. Stress intensity factors at tips of branched cracks under various loadings. Int. J. Fract. 1992, 54, 293–316. [Google Scholar] [CrossRef]
- Chaker, C.; Barquins, M. Sliding effect on branch crack. Phys. Chem. Earth 1996, 21, 319–323. [Google Scholar] [CrossRef]
- Li, Y.P.; Chen, L.Z.; Wang, Y.H. Experimental research on pre-cracked marble under compression. Int. J. Solids Struct. 2005, 42, 2505–2516. [Google Scholar] [CrossRef]
- Meggiolaro, M.A.; Miranda, A.C.O.; Castro, J.T.P.; Martha, L.F. Stress intensity factor equations for branched crack growth. Eng. Fract. Mech. 2005, 72, 2647–2671. [Google Scholar] [CrossRef]
- Zhang, B.; Li, S.C.; Yang, X.Y.; Zhang, D.F.; Yang, W.M. Uniaxial compression tests on mechanical properties of rock mass similar material with cross-cracks. Rock Soil Mech. 2012, 33, 3674–3679. [Google Scholar]
- Atkinson, B.K.; Meredith, P.G. Stress corrosion cracking of quartz: A note on the influence of chemical environment. Tectonophysics 1981, 77, T1–T11. [Google Scholar] [CrossRef]
- Karfakis, M.G.; Akram, M. Effects of chemical solutions on rock fracturing. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1993, 30, 1253–1259. [Google Scholar] [CrossRef]
- Tang, L.S.; Wang, S.J. Progress in the study on mechanical effect of the chemical action of water-rock on deformation and failure of rocks. Adv. Earth Sci. 1999, 14, 433–439. [Google Scholar]
- Tang, L.S.; Zhang, P.C.; Wang, S.J. Testing study on macroscopic mechanics effect of chemical action of water on rocks. Chin. J. Rock Mech. Eng. 2002, 21, 526–531. [Google Scholar]
- Li, N.; Zhu, Y.M.; Su, B.; Gunter, S. A chemical damage model of sandstone in acid solution. Int. J. Rock Mech. Min. Sci. 2003, 40, 243–249. [Google Scholar]
- Chen, S.L.; Feng, X.T.; Li, S. The effect of chemical erosion on mechanical behaviors of Xiaolangdi sandstone. Rock Soil Mech. 2002, 23, 284–287. [Google Scholar]
- Chen, S.L.; Feng, X.T.; Li, S. The fracturing behaviors of Three Gorges granite under chemical erosion. Rock Soil Mech. 2003, 24, 817–821. [Google Scholar]
- Ding, W.X.; Feng, X.T. Testing study on mechanical effect for limestone under chemical erosion. Chin. J. Rock Mech. Eng. 2004, 23, 3571–3576. [Google Scholar]
- Yao, H.Y.; Feng, X.T.; Cui, Q.; Zhou, H. Meso-mechanical experimental study of meso-fracturing process of limestone under coupled chemical corrosion and water pressure. Rock Soil Mech. 2009, 30, 59–66. [Google Scholar]
- Han, T.; Chen, Y.; Song, Y.; Li, W.; Yu, Z. Experimental study of mechanical characteristics of sandstone under different loading paths. Chin. J. Rock Mech. Eng. 2012, 31, 3959–3966. [Google Scholar]
- Fairhurst, C.E.; Hudson, J.A. Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression. Int. J. Rock Mech. Min. Sci. 1999, 36, 279–289. [Google Scholar]
- Horii, H.; Nemat-Nasser, S. Compression-induced microcrack growth in brittle solids: Axial splitting and shear failure. J. Geophys. Res. Atmos. 1985, 90, 3105–3125. [Google Scholar] [CrossRef]
- Horii, H.; Nemat-Nasser, S. Brittle failure in compression: Splitting faulting and brittle-ductile transition. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1986, 319, 337–374. [Google Scholar]
- Ding, W.X.; Feng, X.T. Damage effect and fracture criterion of rock with multi-preexisting cracks under chemical erosion. Chin. J. Geotech. Eng. 2009, 31, 899–904. [Google Scholar]
Natural Density (g/cm−3) | Natural Moisture Content | Mineral Composition | Uniaxial Compressive Strength/Mpa | |||
---|---|---|---|---|---|---|
Calcite | Biochip | Quartz | Matal Mineral | Compressive Strength/Mpa | ||
2.34 | 1.7% | 68% | 30% | 1% | 1% | 89.8 |
Ingredient | Concentration | pH |
---|---|---|
NaCl | 0.1 1 | 2 7 12 |
Distilled water | null | 7 |
Chemical Solution | α = +60° | α = +45° | α = +30° | α = −30° | α = −45° | α = −60° | |
---|---|---|---|---|---|---|---|
Natural environment | σ | 54.11 | 53.25 | 51.2 | 40.69 | 39.11 | 38.93 |
Distilled water | σt | 51.63 | 50.47 | 48.8 | 39.07 | 37.45 | 36.65 |
ρ | 4.58 | 5.23 | 4.68 | 4 | 4.23 | 5.86 | |
0.1 mol/L NaCl pH = 2 | σt | 43.16 | 42.61 | 42.16 | 30.8 | 29.92 | 30.05 |
ρ | 20.23 | 19.98 | 17.66 | 24.31 | 23.49 | 22.81 | |
0.1 mol/L NaCl pH = 7 | σt | 50.05 | 49.65 | 48.88 | 38.72 | 36.16 | 35.85 |
ρ | 7.49 | 6.76 | 4.53 | 4.85 | 7.53 | 7.91 | |
0.1 mol/L NaCl pH = 12 | σt | 48.65 | 46.37 | 45.00 | 36.65 | 33.29 | 33.49 |
ρ | 10.09 | 12.92 | 12.11 | 9.93 | 14.87 | 13.97 | |
0.1 mol/L NaCl pH = 2 | σt | 41.62 | 40.47 | 40.69 | 29.88 | 29.73 | 29.73 |
ρ | 23.07 | 24 | 20.52 | 26.57 | 23.97 | 23.63 | |
0.1 mol/L NaCl pH = 7 | σt | 49.78 | 48.76 | 48.07 | 38.07 | 36.05 | 35.49 |
ρ | 8.00 | 8.43 | 6.11 | 6.45 | 7.82 | 8.84 | |
0.1 mol/L NaCl pH = 12 | σt | 46.81 | 45.57 | 44.52 | 34.07 | 32.93 | 32.65 |
ρ | 13.48 | 14.42 | 13.05 | 16.28 | 15.79 | 16.13 |
Crack Patterns | Chemical Environment | |||||
---|---|---|---|---|---|---|
Natural Environment | Distilled Water | 0.1 mol/L NaCl pH = 7 | 1 mol/L NaCl pH = 7 | 1 mol/L NaCl pH = 12 | 1 mol/L NaCl pH = 2 | |
Pattern I | √1 | √1 | √1 | √1 | √1 | √1 |
Pattern II | √ | |||||
Pattern III | ||||||
Pattern V | √ | |||||
Pattern VI | √ | √ | √ | |||
Pattern VII | √ | √ | √ | |||
Pattern VIII | √ | √ | √ | √ | √ | √ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Dong, Q.; He, J. The Effect of Chemical Corrosion on Mechanics and Failure Behaviour of Limestone Containing a Single Kinked Fissure. Sensors 2021, 21, 5641. https://doi.org/10.3390/s21165641
Wu Y, Dong Q, He J. The Effect of Chemical Corrosion on Mechanics and Failure Behaviour of Limestone Containing a Single Kinked Fissure. Sensors. 2021; 21(16):5641. https://doi.org/10.3390/s21165641
Chicago/Turabian StyleWu, Yulin, Qianqian Dong, and Jian He. 2021. "The Effect of Chemical Corrosion on Mechanics and Failure Behaviour of Limestone Containing a Single Kinked Fissure" Sensors 21, no. 16: 5641. https://doi.org/10.3390/s21165641
APA StyleWu, Y., Dong, Q., & He, J. (2021). The Effect of Chemical Corrosion on Mechanics and Failure Behaviour of Limestone Containing a Single Kinked Fissure. Sensors, 21(16), 5641. https://doi.org/10.3390/s21165641